

IIPL/HAL/ENV/23-24/MOEF- ERO -02 Date: 08.05.2023

To,

The Director
Govt of India
MOEF&CC,
Integrated Regional Office, Kolkata, 1B-198,
Salt Lake City, Sector III, Kolkata-700106

Subject: Half-yearly Compliance Report for compliance status of stipulated conditions of Environmental Clearance No. J-11011/136/2007-IA .II (I) as on Period Oct 22- March 22.

Dear Sir,

We are submitting herewith half yearly compliance report as per the stipulated conditions of the Environmental clearance granted for the replacement of furnace oil based hot air generator by fluidized bed biomass gassifier in the DAP-1 Plant of Indorama India Pvt Ltd. at Haldia, West Bengal.

Hope you will find this in order.

We are also uploading the EC compliance report in our company website in the following link.

https://ircagro.com/compliance-report/

Thanking You

Yours Sincerely

For Indorama India Pvt Ltd

(Formerly IRC Agrochemicals Pvt Ltd)

Chandra Shekhar Prasad Chief Operating Officer

Enclosures: Compliance status report

Thomana Canada Halda

CC :-

1.The Scientist 'D' & In-charge, Central Pollution Control Board, Zonal Office, Kolkata Southernd Conclave, Block 502, 5th & 6th Floors, 1582 Rajdanga Main Road, Kolkata -700107

2.The Senior Environmental Engineer, EIM cell, West Bengal pollution Control Board,

10 A, Block-LA, Sector – III, Salt Lake City, Kolkata - 700106

3. Incharge & Environmental Engineer, Haldia Regional office.

HALF-YEARLY COMPLIANCE

Report of the Conditions of the Environmental Clearance of the replacement of furnace oil based hot air generator by fluidized bed biomass/Coal gasifier DAP-1 plant

Period-October 2022 - March 2023

Indorama India Pvt Ltd

PO:-Durgachak, Haldia,

Dist:Purba Medinipur,

West Bengal: 721602 T: +91(03224)660600

INDEX

SI. No.	Particulars	Page No.
I	Conditions stipulated in Environmental Clearance (Specific Conditions)	3-8
II	Conditions stipulated in Environmental Clearance (General Conditions)	8-11
III	Annexures	12-138
01	Stack Monitoring results	12
02	Ambient Air Monitoring results	13-15
03	Ambient Noise Monitoring results	16
04	ETP discharge water results & ETP Recycling Plant Photographs	16-17
05	Details information on compliance of CREP	18-21
06	Emission load of DAP-1 plant after scrubber for Biomass/Coal based HAG	22
07	Eco sustainability measures (Environment Day celebration 2022, CSR report)	23-29
08	Copy of Environmental Clearance	30-34
09	Environment Management Cell structure with Contact Details	35
10	Cost for Environmental pollution control measures	36
11	Reports of stack monitoring, Ambient air monitoring, Ambient Noise monitoring, ETP discharge water results , ground water monitoring reports	37-138

Name of the Project:- Replacement of Furnace oil based Hot air generator(HAG) by fluidized Bed Biomass Gassifier in the DAP1 plant of Indorama India Pvt Ltd.

<u>Clearence Letter no:-</u> J-11011/136/2007-IA II (I) dated 20-07-2007

Period of compliance reports: 1st October 2022 to 31st March 2023

Sr. No.	Conditions stipulated in Environmental Clearance	Compliance Status
Al Spe	ecific Conditions	
1.	The gaseous and particulate matter	The gaseous and particulate matter emissions
	emissions from various units shall	from various units (Sulphuric acid plant (SAP1 &
	conform to the standards prescribed	SAP2), Diammonium phosphate plant (DAP1 &
	by the W. B. State Pollution Control	DAP2) , Single superphosphate plant (SSP) are
	Board (WBPCB). All emissions including	within the permissible limit as per Consent to
	SPM, RPM, SO2, and NOx should be	Operate.
	within permissible limits. At no time,	
	particulate emissions from the unit	
	shall exceed 100 mg/Nm3 and all the	Continuous online analysers are installed for
	necessary air pollution control system	Particulate matter (PM) in DAP plant (Di
	shall be installed.	ammonium phosphate Plant), SSP plant (single
		superphosphate Plant). Further NH3, HF
	Continuous on-line monitors for	analysers in DAP plants and HF analyser in SSP
	particulate emissions shall be installed	plant are installed and connected to CPCB
	in stacks. Interlocking facility shall be	server as per CPCB guidelines of CEMS system
	provided in the pollution control	of fertilizer industry. Interlocking facility provided
	equipment so that in the event of the	with the pollution control equipment in the
	pollution control equipment not	plant such as interlocking facility provided with
	working, the respective unit (s) is shut	scrubber pumps. In DAP 1, DAP2 and SSP Plant.
	down automatically.	Monitoring reports of stack emission are
		provided in annexure-1.

2.	dust collection and extraction system at appropriate place to control fugitive dust emissions. Cyclone and Scrubbers shall be provided to control	Dust collection and extraction system at all material transfer points and cyclone with bag filter is installed in DAP plant for capturing dust particle & send back to the process. High efficiency bag filter is installed in SSP ball mill grinding section by replacing the earlier one. Scrubbers have been installed for controlling gaseous emissions from the stack and maintaining emission level below the emission limit of 100 mg/nm3 for SPM. Online PM analyzers are also installed in all the stacks of the plant.
3.	shall be set up as per statutory requirement in consultation with the WBPCB Ambient air quality including ambient noise levels shall not exceed the standards stipulated under EPA or by the State authorities. Monitoring of ambient air quality and shall be carried out regularly in consultation with WBPCB and data	

		the month of Oct'22–Mar'23. Calibration of the instruments measuring ambient air quality done by third party
4.	Recycle and reuse of water through recirculation shall be ensured	Water consumption is as per CTO standard and no additional water is being used. The DAP-1/DAP2 plant & SSP plant is zero liquid effluent discharge plant.
		In Aug 22, an effluent recycling plant of 40m3/Hr has been installed. Major components of effluent recycling plants are: HRSCC (High rate solid contact clarifier), Multigrade filter, UF and RO system. The permeate water from RO is used in DM plant and cooling tower make up and reject water is used in DAP & SSP plant. This project has reduced the effluent discharge towards zero and fresh water consumption has also been reduced due to this. ETP reports are attached in annexure-4 Pictures of Effluent recycling plant is also attached in annexure -4.
5.	properly disposed off and no solid	Spent V2O5 catalyst & acidic residue (Hazardous waste) which generates from sulfuric acid plant is disposed to West Bengal

	premises. Fly ash generated due to	Waste management(Ramky).Sulphur
	burning of biomass /coal shall be used	sludge(Hazardous Waste) generates form
	as filler in DAP manufacturing process	filtration of Sulphur in sulphuric acid plant is
		sent to West Bengal Waste management. Used
		oil (Hazardous waste) generates from
		maintenance activity is sold to WBPCB
		approved recycler. ETP sludge generated
		from effluent treatment plant operations also
		disposed to West Bengal Waste Management.
		Total 2.78 MT of spent catalyst , 12.57 MT of ETP
		sludge, 0.45 MT of used oil, 2.57 MT of Acid
		residue, 27.19 MT of Sulphur sludge generated
		during this period . Fly ash (Solid waste)
		generated due to burning of coal/biomass is
		used as a filler in DAP manufacturing process.
		Total 326.15 MT of metal scrap generated
		during the period, which was sold to scrap
		dealer.
6.	All the recommendations mentioned	The CREP compliance details attached in
	in the Corporate Responsibility for	annexure-5
	Environmental Protection (CREP) of	
	CPCB for fertilizer plants shall be	
	implemented	

7.	Rainwater harvesting measures shall	As per Ground water authority, SWID we are not
	be adopted. The company shall	allowed to recharge ground water. Currently to
	harvest the rainwater from the roof	conserve fresh water we are having small rain
	tops and storm water drains to	water sumps in various plants to collect and use
	recharge the ground water and use	rain water in process. Apart from that we have
	the same water for the various	a 2500 m3 of HDPE lined pond for storing of rain
	activities of the project to conserve	water from where we use the rain water in SSP
	the fresh water	Plant process .We have constructed additional
		2000 & 2700 m3 of HDPE lined concrete pond
		for rain water harvesting (storage and
		utilization) and improvement in storm water
		management. To strengthen the storm water
		collection system, we have roof top water
		collection system. Rain water is used in SSP plant
		process.
	Necessary other statutory clearances	Complied.
8.	from other concerned Departments	
	including 'No Objection Certificate'	
	from the WBPCB shall be obtained	
	The first of the strained	
9.	·	Pollution load calculations due to replacement
		of HAG for the period Oct'22-Mar'23 is
	(HAG) by fluidised bed bio-mass	
	gassifier in the DAP-1 Plant shall be	•
	assessed and a compliance report	
	shall be submitted to the Ministry's	
	Regional Office at the Bhuvaneshwar,	

	Orissa, CPCB and WBPCB	
	The company shall undertake eco-	
10.	development measures including	Eco development measures and community
	community welfare measures in the	welfare measures are attached in annexure-7
	project area	
B] Ger	neral Conditions	
1.	The project authority shall adhere to	
	the stipulations made by West Bengal	The stipulations made by WBPCB being
	Pollution Control Board (WBPCB) and	adhered.
	State Government	
2.	No further expansion or modification of	We ensure that no further expansion or
	the plant shall be carried out without	modification of the plant shall be carried out
	prior approval of this Ministry	without prior approval. EC letter is attached in
		annexure - 8
3.	The overall noise levels in and around	
	the plant area shall be kept well within	Noise survey in and around the plant
	the standards (85 dBA) by providing	conducted periodically to ensure the
		compliance. They are within permissible limits
		We are also measuring the ambient noise,
	etc. on all sources of noise generation.	
		prescribed under Environmental Protection
	·	act, 1986. Diesel generator rooms have
	Environmental (Protection) Act, 1986	
	Rules, 1989 viz. 75 dBA (day time) and 70 dBA (night time)	

4.	Proper housekeeping and adequate occupational health programmes shall be taken up	We are maintaining proper housekeeping in our plant. Our senior management is also very focused to improve the GHK of the plant. We have occupational health center in our plant. We carry out periodic medical checkup for all regular employees, which includes clinic examination of relevant pathological tests (CBC, FBS, Liver function tests, lipid profile, Pulmonary function tests etc. From Oct'22–Mar'23 total 1042 nos. of employees medical checkup was planned and 1040 nos. completed i:e completion% is 99.47%
5.	A separate environmental management cell to carry out various management and monitoring functions shall be set up under the control of Senior Executive	A separate environment department is formed with qualified team headed by COO (Chief Operating Officer). The reporting hierarchy along with qualification details is mentioned in annexure-9
6.	towards environmental pollution control measures and used judiciously to implement the conditions stipulated by the Ministry of Environment and	Yearly budgets are raised and approved by management for various functions including Environment Management. Apart from budgets, environmental performance improvement related capital projects are approved every year. Details are in annexure-

Government. The funds so provided 10. shall not be diverted for any other purpose The Regional Office of this Ministry at We are regularly submitting half yearly 7. Bhuvaneshwar / CPCB / SPCB shall Compliance reports. An earlier half-yearly monitor the stipulated conditions. A six Compliance report has been submitted monthly compliance report and the through letter No IIPL/HAL/ENV/22-23/MOEFmonitored data along with statistical ERO-01 dated 16.11.2022 in soft and hard interpretation shall be submitted to copy. them regularly. The Project Proponent shall inform the A public notice has been given to all through 8 public that the project has been publishing the news for accord of accorded environmental clearance Environmental clearances. Advertisement was by the Ministry and copies of the published in local newspaper Bartaman clearance letter are available with the (Bengali) and Statesman (English), which was W. B. Pollution Control Board / sent to MOEF&CC, Bhubaneshwar office. Committee and may also be seen at Website of the Ministry of Environment and Forests at http://envfor. nic.in. This should be advertised within seven days from the date of issue of the clearance

letter at least in two local newspapers
that are widely circulated in the region
of which one shall be in the vernacular
language of the locality concerned
and a copy of the same shall be
forwarded to the Regional office at
Bhubaneshwar

<u>Annexure - 1</u> Stack monitoring results

DAP -1				DAP -2		
Month	PM (mg/NM 3)	Fluoride as HF(mg/NM3)*	NH3 (mg/NM3))	PM (mg/NM3)	Fluoride as HF(mg/NM3)*	NH3 (mg/NM3))
Limit as per CTO (Jan2019-Dec 2023)	150	10	300	150	10	300
October	87	0.72	88	92	0.64	72
November	86.7	0.97	262.5	85	0.67	82
December	72	0.83	59.9	94	0.66	87.9
January	51.3	1.1	273.5	56.9	1.05	264.8
February	20	2.84	44	34	2.02	68.4
March	83	0.86	75	76	1.1	125

	SSP (M	SSP (Ball Mill)		
Month	PM (mg/NM3) Fluoride as HF (mg/NM3)*		PM (mg/NM3)	
Limit as per CTO (Jan2019-Dec 2023)	125	20	125	
October	68	1.02	53	
November	26.7	1.17	40	
December	59	0.95	53	
January	70.1	1.95	-	
February	40	0.46	56	
March	72	1.73	47	

	SAP	- 1	SAP - 2	
Month	SO2 (mg/NM3)	Acid Mist (mg/NM3)	\$O2 (mg/NM3)	Acid Mist (mg/NM3)
Limit as per CTO (Jan2019-Dec 2023	1250	70	1250	70
October	174	48	86	13
November	176	45	232.5	31
December	176	45	145	19.6
January	271.8	34.7	NA	NA
February	140	45	136	24
March	162	46	NA	NA

Note:- *This is also measured in online analyser installed in stack and connected to CPCB server NA indicates plant was not available for stack monitoring for shutdown or any other reason.

Annexure-2

Ambient air monitoring results :-

SI no	Location	Parameters				
01	Priyangbada					
02	Durgachak	PM10, PM2.5, SO2, NO2, NH3, SO3+Acid mist, F,				
03	Sanjana (Ammonia terminal facility)	CO,Pb,Ni,As,Benzopyrene,Benzene,O3 (24 hour)				
04	Near Main Gate Inside Plant					

Parameters	Limit as per CPCB notificatio n, 18th Nov,2009		(Piyangbada)			Loca	Location 2 (Durgachak)			Location 3 (ATO-1)				Location 4 (Near Main Gate Inside Plant)			
Mor	nth	Ma	rch	Febr	uary	Ma	rch	Febr	uary	Mai	ch	February		M	arch	Febr	uary
PM10 (μg/m3)	100	61.6	49.9	59.2	48.7	88.6	95.3	82.8	91.7	89.2	81.9	92.4	84.7	97.4	90.6	78.7	98.9
PM2.5 (μg/m3)	60	33.4	30.2	27.3	22.9	50.7	52	45.6	44.2	43.5	47.2	51.3	47.2	57.1	44.9	40.8	57.1
SO2 (μg/m3)	80	6.4	<6.0	7.5	8.3	9.7	8.4	9.6	10.5	12.5	10.4	9.9	12	36.1	40.8	10.1	32.7
NO2 (μg/m3)	80	36.7	25.6	27.1	25.5	50.2	40.9	42.3	51.7	39.2	42.9	46.2	41	54.3	46.7	33.2	58.6
NH3 (μg/m3)	400	28.1	22.7	15.5	19.7	56.2	50.9	32.4	25.9	72.8	65.4	48.1	52.7	62.8	67.2	29.7	36.1
SO3+Acid Mist (µg/m3)	_	23.4	18.7	18.5	20.4	30.6	21.8	25.3	32.4	39.2	28.5	27.5	36.1	57.9	61.5	24.1	52.6
F(μg/m3)	-	13.9	10.7	11.7	13.8	18.2	23.4	21.2	15.7	35.2	42.7	39.5	31.2	29.4	24.6	19.7	26.2
CO (mg/m3)	2	0.44	0.35	0.23	0.29	0.51	0.6	0.63	0.58	0.44	0.37	0.37	0.51	0.72	0.58	0.38	0.84
Pb (μg/m3)	1	<0.0 1	<0.0 1	<0.0 1	<0.0 1	<0.0 1	<0.0	<0.0 1	<0.0 1	<0.01	<0.0 1	<0.0 1	<0.0	<0.0 1	<0.01	<0.0 1	<0.0
Ni (ng/m3)	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
As(ng/m3)	6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzo pyrene (ng/m3)	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzene (μg/m3)	5	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2
O3 (μg/m3)	100	<20	<20	23.8	<20. 0	36.8	25.9	22.8	34.2	29.5	33.7	29.2	33.9	29.3	35.2	24.2	26.3

Parameters	Limit as per CPCB notificatio n, 18th Nov,2009		Location 1 (Piyangbada)			Location 2 (Durgachak)			Location 3 (ATO-1)			Location 4 (Near Main Gate Inside Plant)					
Mor	nth	Janı	uary	Dece	mber	Janı	uary	Dece	mber	Jan	uary	Dece	mber	January		December	
PM10 (μg/m3)	100	69.9	78.6	68.5	76.9	76.8	82.7	84	90.7	91.8	87.3	80.8	88.3	89.8	98.6	87.6	94.3
PM2.5 (μg/m3)	60	33.5	45.4	44.1	32.6	36.5	42.8	48	42.1	54.3	44.7	46.7	50.2	48.5	52.3	50.2	54.3
SO2 (μg/m3)	80	6.8	7.2	8.9	9.6	7.8	8.6	9.1	10.3	22.6	18.6	10.7	8.4	28.7	36.5	51.8	40.9
NO2 (μg/m3)	80	40.2	35.6	39.5	30.6	49.7	55.2	57.3	50	51.7	43.2	41.3	45.9	47.8	57.6	58.6	52.5
NH3 (μg/m3)	400	38.7	47.3	19.1	27.2	51.2	63.5	33.2	40.8	67.5	78.6	51.8	57.1	51.4	68.7	43.9	36.3
SO3+Acid Mist (µg/m3)	_	17.4	20.9	20.1	18.6	17.7	20.1	15.7	26.5	25.2	36.2	21.6	24.3	40.6	51.3	54.9	57.2
F(μg/m3)	-	11.7	14.6	12.6	15.4	21.5	18.6	19.5	16.1	32.7	23.2	17.6	22.3	31.4	27.5	36.9	28.6
CO (mg/m3)	2	0.21	25.3	0.43	0.38	0.67	0.78	0.55	0.62	0.53	0.65	0.40	0.47	0.78	0.89	0.68	0.59
Pb (μg/m3)	1	<0.0 1	<0.0	<0.0 1	<0.0	0.02	0.02	<0.0	<0.0	<0.0	<0.01	<0.0	<0.0	0.03	0.03	<0.0	<0.0
Ni (ng/m3)	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
As(ng/m3)	6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzo pyrene (ng/m3)	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzene (μg/m3)	5	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2
O3 (μg/m3)	100	21.8	25.3	30.6	36.1	33.7	28.5	<20	31.9	26.5	30.7	<20	24.8	27.6	32.6	33.9	26.2

Parameters	Limit as per CPCB notification, 18th Nov,2009		Loca (Piyan	tion 1 gbada)		Loca	tion 2 (Durga	chak)	Lo	Location 3 (ATO-1)			Location 4 (Near Main Gate Inside Plant)	
Mo	nth	Nove	mber	Octo	ber	November		October		November		October		October	
PM10 (μg/m3)	100	80.7	68.5	79.5	71.9	85.8	94.1	85.9	97.3	81.6	89.8	96.1	86.3	92.2	81.7
PM2.5 (μg/m3)	60	42.9	35.2	42.8	34.3	48.3	42.5	40.9	51.3	50.2	51.7	54.1	48.2	53.8	44.7
SO2 (μg/m3)	80	8.7	7.9	7.2	7.7	12.8	9.6	6.8	8.5	8	6.5	11.6	9.8	10.2	8.9
NO2 (μg/m3)	80	35.3	30	42.1	35.7	51	42.8	45	55.8	47.3	37.2	41.5	32.4	37.1	29.5
NH3 (μg/m3)	400	19.7	26.2	22	30.7	35.1	28.3	21.8	35.4	51.6	42.8	53.4	45.7	29.4	36.2
SO3+Acid Mist (µg/m3)	-	22.1	14.7	24.4	29.2	18	26.1	21.9	35.7	34.2	22.8	49.3	35.5	40.3	31.1
F(μg/m3)	_	15.1	13.9	22.9	15.9	16.3	20	13.7	26.4	24.2	19.5	15.9	22.4	17.9	21.7
CO (mg/m3)	2	0.51	0.34	0.33	0.51	0.75	0.63	0.89	1.29	0.53	0.29	0.91	0.72	0.47	0.59
Pb (μg/m3)	1	<0.0	<0.0	0.02	<0.0	0.02	0.04	0.02	0.03	<0.0	0.02	0.04	0.02	0.03	<0.0
Ni (ng/m3)	20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
As(ng/m3)	6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzo pyrene (ng/m3)	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzene (μg/m3)	5	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2
O3 (μg/m3)	100	36.1	30.3	32.5	37.6	42.8	36.4	31.7	24.9	30.5	25.7	36.4	29	36.4	22

Note- The ambient air monitoring station (Location 1 & 2) are outside of the factory and surrounded by other industries and high traffic roads.

Annexure-3

Ambient Noise Monitoring results

Location	Back Side Of DG room	Near Parking Gate	Near Main Gate	Near DAP Gate
	Monitoring D (26.12.2022- 28.1			
Results in Leq dB(A) Day Time	54.7	57.2	51.5	63.3
Results in Leq dB(A) Night Time	51.5	55.5	51	60.3
Location	Back Side Of DG room	Near Parking Gate	Near Main Gate	Near DAP Gate
	Monitoring D (11.03.2023 – 14.0			
Results in Leq dB(A) Day Time	59.3	53.7	55.1	52.6
Results in Leq dB(A) Night Time	57	50.3	51.4	48.5

Annexure – 4

ETP discharge results:-

		ETP Water Outlet Form Final Outlet Drain											
Month	pH (mg/ I)	BOD (mg/l)	COD (mg/l)	(TSS) (mg /l)	Fluori de (F) (mg/l)	Phosphate (as P) (mg/l)	Oil & Greas e (mg/l)	Ammon iacal nitroge n as N (mg/l)	Kjeldahl Nitrogen as N (mg/l)	Free ammonic al nitrogen as N (mg/l)			
Limit as per CTO(Jan2019- Dec 2023)	6.5- 8.5	30	250	100	10	5	10	50	75	4			
October	7.85	<2.0	8	6.7	<0.1	<0.05	<5.0	0.30	0.38	0.16			
November	7.68	<2.0	8	<2.5	0.54	<0.05	<5.0	3.1	6.4	2.0			
December	7.65	<2.0	8	14	0.65	0.21	<5.0	<0.1	<0.3	<0.1			
January	7.80	<2.0	<4.0	5.1	0.52	0.33	<5.0	<0.1	<0.3	<0.1			
February	7.52	<2.0	8	<2.5	0.52	0.22	<5.0	<0.1	<0.3	<0.1			
March	7.46	9.6	37	12	0.51	0.07	<5.0	<0.1	<0.3	<0.1			

Effluent Recycling Plant:

Annexure-5

Details information on compliance of CREP

SI no	Conditions of CREP	Compliance status
1.	Efforts will be made for conservation of	
	water, particularly with a target to have	We don't have a ammonia, urea
	consumption less than 8.12 and 15 m3 tons	plant. So this point is not applicable to
	of urea produced for plant based on gas,	US.
	naphtha and fuel oil, respectively. In case	
	of plants using Naphtha and Gas both as	
	feedstocks, water consumption target of	
	less than 10m3/ tonne will be achieved.	
2.	Use of arsenic for CO2 absorption in	Chromate and arsenic based
	ammonia plants and chromate based	chemicals are not used in our industry.
	chemicals for cooling system, which is still	Zn and phosphate based chemicals is
	continuing in some	used in cooling water treatment.
	Industries, will be phased out and replaced	
	with non- arsenic and non- chromate	
	systems.	
3.	Adequate treatment for removal of oil,	We don't use any chromate based
	chromium (till non- chromate based	cooling system in our industry. No
	cooling system is in place) and fluoride will	effluent is generated from SSP plant
	be provided to meet the prescribed	and DAP/NPK plant . Effluent is
	standards at the source (end respective	generated from RO plant reject, DM
	process unit) itself.	plant regeneration and cooling tower
		blowdown. Fluoride level in the
		effluent generated from SAP(Sulfuric
		acid plant) & DM /RO plant remains
		within the permissible limit.

4.	Proper and complete nitrification and de-	For industrial effluent treatment plant
	nitrification will be ensured wherever such	this is not applicable. For sewage
	process used for effluent treatment	treatment plant we are ensuring this.
5.	Ground water monitoring around the	We are conducting ground water
	storage facilities and beyond the factory	monitoring by third party Lab once in a
	premises will be carried out at regular	quarter. Reports are attached herewith
	intervals Particularly for pH.	in annexure -10
6.	No effluent arising from process plants and	No effluent is discharged into storm
	associated facilities will be discharged to	water drain. Effluent drain and storm
	the storm water drain. The quality of storm	water drains are separate. The quality
	water will be regularly monitored by all the	of storm water is regularly monitored
	industries.	
7.	The industries, where waste water/ effluent	
	flows through the storm water drains even	Waste water / effluent is not being
	during the dry season will install continuous	discharged into storm water drain.
	Systems for monitoring the storm water	Storm water drains are separate from
	quality for pH, ammonia and fluoride. If	effluent drain.
	required, storm water will be routed	
	through effluent treatment plant before	
	discharging	
8.	The sulphuric acid plants having SCSA	
	system will switch over to DCDA system by	We have two sulfuric acid plants and
	March 2004 to meet the emission standard	both are DCDA process. Emission of
	for SO2 as 2kg/ton of H2SO4 produced	SO2 is maintained as per CTO and it is
		less than 2kg/Ton of H2SO4.
9.	Sulphuric acid plants having DCDA system	
	will improve the Conversion and absorption	In both the sulphuric acid plants
	efficiencies of the system as well as	conversion is more than 99 %. In SAP1
	scrubbers to achieve SO2 emission of 2kg	plant & SAP2 plant SO2 emission /MT
	tonne of acid produced in case of plants	of sulphuric acid is much less than
	having capacity above 300 tpd and 2.5 kg	2Kg/Ton of acid produced.

	tonne in case of plants having capacity upto 300tpd	
10.	Stack height for sulphuric acid plants will be	Stack height for SAP1 & SAP2 plant is
	provided as per the guidelines.	40 meter which follows the Sulphuric
		acid plant emission guidelines.
		We have installed bag filter in rock
11.	An action plan for providing proper dust	grinding section in SSP plant and
	control systems rock Phosphate grinding	particulate emission from grinding unit
	unit in phosphoric acid plants/ single	stack is well below the permissible limit
	superphosphate plants, so as to achieve	as per CTO. Stack analysis data is
	particulate emission of 150 mg/Nm3 will be	tabulated in annexure-1. Online
	submitted by September 2003 and	analysers for particulate matter also
	complied with by March 2004.	being installed in the SSP plant grinding
		unit stacks (ball mill) and connected to CPCB server
12.	Particulate as well as gaseous fluoride will	
	be monitored and adequate control	We are monitoring both gaseous and
	systems will be installed by June 2004 to	particulate fluoride and fluorine
	achieve the norms on total fluoride	scrubbers are installed in SSP and DAP
	emissions (25 mg/Nm3).	plants to keep the emission within
		prescribed limits.
13.	Continuous SO2 emission monitoring	We have online continuous SO2
	systems will be installed in sulphuric acid	emission monitoring system in both
	plants (having capacity 200 tpd and	sulfuric acid plants and connected to
	above) by March	CPCB server. SO2 analyser has remote
	2004.	calibration facility.
14.		Ambient air monitoring of SO2, NOX,
	Regular monitoring of ambient air quality	PM, SO3 , Fluoride, Acid mist being

	with regard to SO2 NOx, PM, SO3, fluoride	monitored twice in month outside
	and acid mist will be carried out	factory premises and inside factory
		premises.
15.	Gypsum will be effectively managed by	
	providing proper lining, dykes with	We don't have any gypsum storage.
	approach roads and monitoring of	This is not applicable for us.
	groundwater quality around storage	
	facilities. Accumulated gypsum will be	
	properly capped.	
16.	An action plan for proper handling, storage	Spent V2O5 catalyst is being
	and disposal of spent catalyst having toxic	generated from Sulfuric acid plant
	metals will be submitted by June 2003 and	during annual shut down. Spent V2O5
	Implemented by September 2003. The	catalyst is being disposed to West
	industry will also explore recovery/buy-back	Bengal Waste Management Pvt Ltd
	of spent catalyst by September 2003.	(Ramky) as per Hazardous Waste
		Authorization & CTO.
17.	Carbon slurry, sulphurmuck and chalk will	Sulphur sludge/ muck is disposed to
	be properly managed and disposed of in	WBWML as per CTO & Hazardous
	properly designed landfill either within	waste authorization.
	premises or in common facility	

Annexure- 6

Emission load of DAP-1 plant after scrubber for Biomass/Coal based HAG

Month	RH	Production	Gas flow (Nm3/Hr)	Particulate matter (mg/Nm3)	Pollution load (SPM) (kg)	Specfic Emission (kg SPM/MT of Production)
Oct-22	551.75	21638.86	174829	87	8392.19	0.39
Nov-22	535	21860.51	158277	86.7	7341.60	0.34
Dec-22	476.5	17599.67	175220	72	6011.45	0.34
Jan-23	618.5	22863.81	196453	51.3	6233.27	0.27
Feb-23	609.75	23293.42	178815	20	2180.65	0.09
Mar-23	156.75	6046.66	187001.84	83	2432.94	0.40
	2948.25	113302.93	178432.64	66.67	35070.94	0.31

Average specific emission kg particulate matter/MT of production 0.31

Note:-

Oct'22–Mar'23 particulate matter (PM) values are sampled and analyzed by third party (NABL) accredited lab.

Annexure-7 Eco sustainability measures (Oct'22 – Mar'23) CSR Report (October'22 – March'23)

We believe in creating synergy between business and the society at large by working closely with the local communities for the purpose of improving the quality of life of the communities we serve through long term stakeholder value creation. We believe in positively impacting the environment and supporting the communities we operate in, focusing on sustainability of our programs and empowerment of our communities.

Livelihood

Beautician training

Empowering women from underprivileged community and create opportunity for employment through beautician training. 60 underprivileged women from marginalized

communities of South Kolkata have completed beautician training with the collaboration of Hope Kolkata Foundation. After completion of the training each trainee have receive the certificate and start-up kit.

Tailoring training

Empowering women from underprivileged community and create opportunity for employment through tailoring training. 20 underprivileged women from marginalized communities of South Kolkata and 50 women from Haldia and Baruipur have completed tailoring training with the collaboration of Hope Kolkata Foundation and Abhyudaya Haldia.

After completion of the training each trainee have receive the certificate and start-up kit.

Poultry farm management training

100 women from economically backward community of the East Medinipur get the training on poultry farm management. After the training, they would be assisted with construction of the poultry farm and supported with chicks, poultry feed and medicines. The main objective of this project is to upgrade the skill on poultry management of the underserved women from the rural marginalized community.

➤ Health

• Overall health camp

To provide free medical benefits to the people from the underprivileged community the health camps have been organised at the local community. There are eight general health

camp have been organised by Deulpota Seva Samitii at the villages in Sutahata block, Mahisadal Block. The health check-up have done for 2227 people from the marginalised community. The specialist doctors from the Indian Cancer Society, Kolkata were present at the camp for the health check-up at the community.

• Eye Screening camps

2809 socially and economically backward people in Sutahata block and Mahishadal block and

Haldia Municipality of Purba Medinipur district were screened in 7 free eye screening camps organised in collaboration with Medical Research Foundation(Sankar-Nethralaya). Among the beneficiaries 1826 received free spectacle.

• Water and Sanitation project at Govt. Schools

We have provided safe sanitary blocks to students of the Govt. schools who still have little

or no access to sanitary facilities within their school with proper light and ventilation and improved drainage system. Provided adequate supply of running water and wash water to sanitary blocks in the schools to support hygienic habits and safe drinking water.

• Menstrual Hygiene Management project

sanitary napkin vending machines and incinerator have installed at 2 govt. high schools to create awareness on Menstrual Hygiene to the school going adolescent girls. There are 20 awareness camps have been organised at the schools to aware the adolescent girls on menstrual hygiene management and there are 1200 girls child have

participated at these awareness camps. We also distributed menstrual hygiene kit to 700 adolescent girl child of 5 Govt. high schools.

➤ Global Recycling Day Celebration:

Global Recycling Day was first established in 2018 by the Global Recycling Foundation, a non-profit organization that aims to promote the importance of recycling and support of sustainable development. The day 18TH March is recognized by the United Nations and is celebrated around the world. Indorama India Haldia also celebrated the Global Recycling Day on 17th & 18th March, 2023. On this day we raised awareness about the importance of recycling and reducing waste. Recycling helps to conserve natural resources, reduce pollution and create jobs. By recycling, we can help protect the planet for future generations. Let's commit to reduce our waste, recycle more and encourage others to do the same! We celebrated this day by giving awareness and Spot Quiz on 3 R principles (Reducing waste, reusing and recycling resources and products).

> Different species of trees planted inside factory to Eco Sustainability measures:

> Installation of Solar Power:

Solar panel of $500 \ kWp$ installed to increase the use of renewable energy as a part of Eco Sustainability measures.

Annexure-8

Copy of Environmental Clearance

F. No. J-11011/136/2017-IA-II(I)

Government of India
Ministry of Environment, Forest and Climate Change
(Impact Assessment Division)

Indira Paryavaran Bhawan Jal Wing, 3rd Floor, Jor Bag Road, New Delhi -110003

Dated: 6th January, 2021

To,

M/s Indorama India Private Limited, P.S. Srijan Tech Park, Dn-52, Unit No. A & B, 14th Floor, Sector-V, Salt Lake, Kolkata

Sub: Replacement of Furnace Oil based Hot Air Generator (HAG) by fluidised Bed Biomass Gassifier in the DAP-1 Plant of Tata Chemicals Ltd. at Haldia, West Bengal by M/s Tata Chemicals Ltd. - Transfer of Environment Clearance regarding.

Sir;

This has reference to your online proposal No. IA/WB/IND2/162727/2020 dated 06th November, 2020 regarding transfer of environmental clearance to the above project, from M/s Tata Chemicals Limited to M/s Indorama India Private Limited.

- Ministry of Environment, Forests and Climate Change vide letter No. 3-11011/136/2007-IA II (I) dated 20th July, 2007 was granted environmental clearance to Tata Chemicals Limited for replacement of Furnace Oil based Hot Air Generator (HAG) by fluidised Bed Biomass Gassifier in the DAP-1 Plant of Tata Chemicals Ltd. at Haldia, West Bengal.
- 3. Now, M/s Indorama India Private Limited has informed that the Name of the company has been changed from M/s Tata Chemicals Limited to IRC Agrochemicals Private Limited in June, 2018. Again the name of company has been changed from M/s IRC Agrochemicals Private Limited to M/s Indorama India Private Limited in 18th February, 2020 without change of ownership or management of company. In this regard, a copy of Certificate of Incorporation registered with the Registrar of Companies, Kolkata (West Bengal) with CIN:U74999WB2017FTC222920 is also submitted.
- 4. M/s Indorama India Private Limited has also submitted a copy of NOC given by Shri Rajiv Chandan, Company Secretary of M/s Tata Chemicals Limited to transfer the above EC in the name of new company and a copy of undertaking as an affidavit signed by Shri Chandra Shekhar Prasad, Factory Manager of M/s Indorama India Private Limited to abide by the terms and conditions prescribed in the environmental clearance dated 20th July, 2007.
- 5. As per the relevant provisions of the EIA Notification, 2006, the environmental clearance to the project for replacement of Furnace Oil based Hot Air Generator (HAG) by fluidised Bed Blomass Gassifler in the DAP-1 Plant of Tata Chemicals Ltd. at Haldia, West Bengal granted by this Ministry

vide letter of even No. dated 20th July, 2007 is hereby transferred **from** M/s Tata Chemicals Limited **to** Indorama India Private Limited, on the same terms and conditions under which prior environmental clearance was initially granted.

This issues with approval of the competent authority.

(Ashok Kr. Pateshwary)

Copy to:-

- The Addl. Principal Chief Conservator of Forests (C), Ministry of Env., Forest and Climate Change, Regional Office (EZ), A/3, Chandersekharpur, Bhubaneswar-751023
- The Member Secretary, West Bengal Pollution Control Board, Paribesh Bhawan 10A, Block-LA, Sector-III Bidhannagar, Kolkata-700 106
- The Member Secretary, CPCB, Parivesh Bhavan, CBD-cum-Office Complex, East Arjun Nagar, Delhi- 32
- Monitoring Cell, MoEF&CC, Indira Paryavaran Bhavan, Jor Bagh Road, New Delhi.
 - 5. Guard File/Monitoring File/ Parivesh Portal/Record File

(Ashok Kr. Pateshwary) Director

F. No. J-11011/136/2007- IA II (I) Government of India Ministry of Environment and Forests (I.A. Division)

Paryavaran Bhawan CGO Complex, Lodhi Road New Delhi – 110 003

E-mail: pb_rastogi@nic.in Telefax: 011: 2436 7668 Dated 20th July, 2007

To.

M/s Tata Chemicals Ltd. P.O. Durgachak, Haldia, East Midnapore – 721 602-West Bengal

E-mail: ?? Fax No.: 03224-252220/252223

Sub: Replacement of Furnace Oil based Hot Air Generator (HAG) by fluidised Bed Biomass Gassifier in the DAP-1 Plant of Tata Chemicals Ltd. at Haldia, West Bengal by M/s Tata Chemicals Ltd.

Sir.

Kindly refer your letter no. nil dated 29th December, 2006 alongwith duly filled Form I regarding above mentioned project.

- 2.0 The Ministry of Environment and Forests has examined your application. It is noted that the proposal is for the replacement of Furnace Oil based Hot Air Generator (HAG) by fluidised bed bio-mass gassifier in the DAP-1 Plant of Tata Chemicals Ltd. at Haldia, West Bengal. Total cost of the project is Rs. 1.73 Crores.
- 3.0 During the operating stage, hot air generated will be passed through a cyclone separator and existing scrubber for removal of dust particles. Scrubbed gases will be discharged through the stack of existing DAP plant. Hot air generated will be passed through cyclone separator and the scrubber for removal of dust particles before discharge. Emissions will be within the permissible limit. No extra water will be required for the proposed facility. Due to burning of biomass/coal, fly ash (108 TPM) will be generated which will be used as filter in DAP manufacturing process.
- 4.0 After considering the facts mentioned above and with due diligence, the Ministry of Environment and Forests accords environmental clearance under the provisions of EIA Notification, 2006 subject to strict compliance to the following specific and general conditions:

A. Specific Conditions:

The gaseous and particulate matter emissions from various units shall conform to the standards prescribed by the W. B. State Pollution Control Board (WBPCB). All emissions including SPM, RPM, SO₂, and NO_x should be within permissible limits. At no time, particulate emissions from the unit shall exceed 100 mg/Nm³ and all the necessary air pollution control system shall be installed. Continuous on-line monitors for particulate emissions shall be installed in stacks. Interlocking facility shall be provided in the pollution control equipment so that in the event of the pollution control equipment not working, the respective unit (s) is shut down automatically.

2

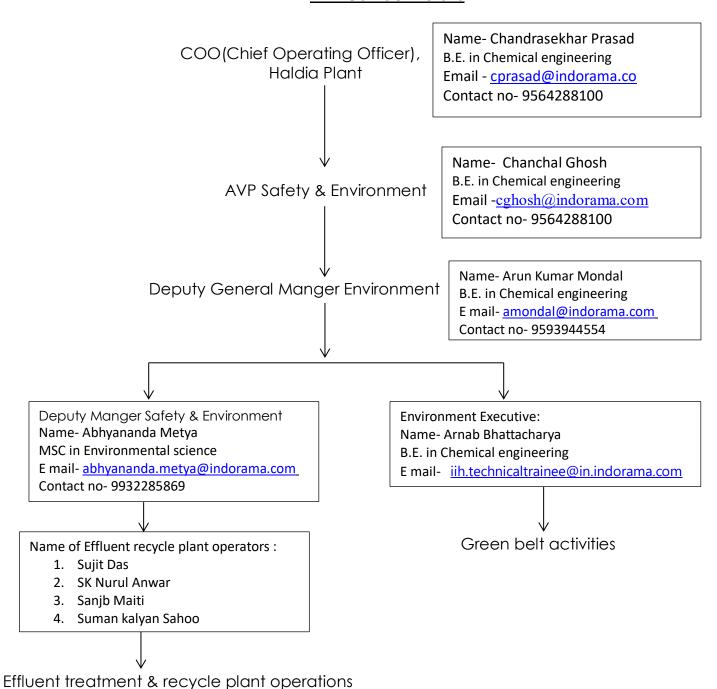
- The company shall install adequate dust collection and extraction system at appropriate places to control fugitive dust emissions. Cyclone and scrubbers shall be provided to control gaseous emissions from the stacks and gaseous emissions shall be maintained within 100 mg/NM³.
- iii. Ambient air quality monitoring stations shall be set up as per statutory requirement in consultation with the WBPCB. Ambient air quality including ambient noise levels shall not exceed the standards stipulated under EPA or by the State authorities. Monitoring of ambient air quality and shall be carried out regularly in consultation with WBPCB and data submitted to the CPCB and WBPCB regularly. The instruments used for ambient air quality monitoring shall be calibrated time to time.
- iv. No additional water shall be used, Recycle and reuse of water through re-circulation shall be ensured. Effort shall be made to adopt 'Zero' discharge.
- v. Solid / hazardous waste shall be properly disposed off and no solid waste shall be disposed off outside the premises. Fly ash generated due to burning of biomass/coal shall be used as filter in DAP manufacturing process.
- vi. All the recommendations mentioned in the Corporate Responsibility for Environmental Protection (CREP) of CPCB for fertilizer plants shall be implemented.
- vii. Rainwater harvesting measures shall be adopted. The company shall harvest the rainwater from the roof tops and storm water drains to recharge the ground water and use the same water for the various activities of the project to conserve fresh water.
- viii. Necessary other statutory clearances from other concerned Departments including 'No Objection Certificate' from the WBPCB shall be obtained.
 - ix. Pollution load due to replacement of Furnace Oil based Hot Air Generator (HAG) by fluidised bed bio-mass gassifier in the DAP-1 Plant shall be assessed and a compliance report shall be submitted to the Ministry's Regional Office at the Bhuvaneshwar, Orissa, CPCB and WBPCB.
- x. The company shall undertake eco-development measures including community welfare measures in the project area.

B. General Conditions :

- The project authority shall adhere to the stipulations made by West Bengal Pollution Control Board (WBPCB) and State Government.
- No further expansion or modification of the plant shall be carried out without prior approval of this Ministry.
- iii. The overall noise levels in and around the plant area shall be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under Environmental (Protection) Act, 1986 Rules, 1989 viz. 75 dBA (day time) and 70 dBA (night time).
 - iv. Proper house keeping and adequate occupational health programmes shall be taken up.
 - A separate environmental management cell to carry out various management and monitoring functions shall be set up under the control of Senior Executive.

- vi. Adequate funds shall be earmarked towards environmental pollution control measures and used judiciously to implement the conditions stipulated by the Ministry of Environment and Forests as well as the State Government. The funds so provided shall not be diverted for any other purpose.
- vii. The Regional Office of this Ministry at Bhuvaneshwar / CPCB / SPCB shall monitor the stipulated conditions. A six monthly compliance report and the monitored data alongwith statistical interpretation shall be submitted to them regularly.
- viii. The Project Proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the W. B. Pollution Control Board / Committee and may also be seen at Website of the Ministry of Environment and Forests at http://envfor.nic.in. This should be advertised within seven days from the date of issue of the clearance letter at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the Regional office at Bhuvaneshwar.
- 5.0 The Ministry or any other competent authority may stipulate any further condition(s) on receiving reports from the project authorities. The above conditions shall be monitored by the Regional Office of this Ministry located at Bhuvaneshwar.
- 6.0 The Ministry may revoke or suspend the clearance if implementation of any of the above conditions is not satisfactory.
- 7.0 Any other conditions or alteration in the above conditions shall have to be implemented by the project authorities in a time bound manner.
- 8.0 The above conditions shall be enforced, inter-alia under the provisions of the Water (Prevention and Control of Pollution) Act, 1974 the Air (Prevention and Control of Pollution) Act, 1981 the Environment (Protection) Act, 1986 and the Public Liability Insurance Act, 1991 along with their amendments and rules.

(Dr. P. B. Rastogi) Additional Director


Copy to :-

- The Chairman, Central Pollution Control Board, Parivesh Bhavan, CBD-cum-Office Complex, East Arjun Nagar, Delhi-110032.
- The Chairman, West Bengal Pollution Control Board, Parivesh Bhawan, 10A Block-LA Sector-III, Salt Lake, Calcutta- 700091.
- The Chief Conservator of Forests, Regional Office (EZ), Ministry of Environment and Forests A-3 Chandrashekharpur, Bhubaneshwar – 751 023
- 4. The Secretary, State Department of Environment, Govt. of West Bengal, Kolkata.
- JS(CCI-I), Ministry of Environment and Forests, Paryavaran Bhavan, CGO Complex, New Delhi.
- Monitoring Cell, Ministry of Environment and Forests, Paryavaran Bhavan, CGO Complex, New Delhi.
- Guard File.
- 8. Monitoring File.
- 9. Record File.

(Dr. P. B. Rastogi) Additional Director

Annexure-9 Environment Management Cell structure with Contact Details

Annexure-10

Cost for Environmental pollution control measures (Oct 22- March 23) are as follows:-

SI No	Item wise expenditure under Environmental Control Measures	Total Amount in Lacs (Approx.)
01	Stack and Effluent , Ambient air analysis cost	19.6
02	Effluent treatment and effluent recycling plant operational cost (consumable chemicals & power cost)	27.3
03.	Manpower charges for operation of Effluent treatment plant and effluent recycling plant	26.8
04	Land development, tree planation (cost of saplings/trees) & Manpower charges for green belt development	10.7
05	Hazardous and biomedical waste management cost	9.82
06	Stack and effluent analyzers maintaince cost	9
07	Capex project for Environmental measure	322.38
	Total Expenditure	425.6

Major Capex to improve Environmental performance in Oct 22-March 23

- Installation of Digital flow meters with telemetric system for Fresh water withdrawal monitoring. Cost- 21.95 lacs.
- Installation of 500 kWp rooftop solar. Cost 264.14 lacs.
- Construction of RCC storm water drain & effluent pit. Cost 36.29 lacs

Total Cost - 322.38 lacs.

Monitoring Reports

Annexure-1

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE, LIMITED.'

Haldia, Pin-721602

Report No. : WB/ED -4697 Date : 30.03.2023

Sample Description: Stack Monitoring

Sample Mark: DAP-1

Date & Time of Sampling:06.03.2022

at 01.30 PM

Reference No.& Date: 4700013395 ,Dtd: 02.08.2021

ANALYSIS RESULT

Α.	General information about stack :		
1.	Stack connected to : DAP-1	A	
2.	Emission due to : Vapour Ge & Drying o		s reaction; Granulation, Screening Milling
3.	Material of construction of Stack : MS		
4.	Shape of Stack : Circular		
5.	Whether stack is provided with permanent platform & ladder: Y	es	
6.	capacity :	Working Lo	pad - 38 TPH
В.	Physical characteristics of stack :		
1.	Height of the stack from ground level : 42 m		
2.	Diameter of the stack at sampling point : 2.5 m		
3.	Height of the Sampling Point from Ground level :40 m		
4.	Area of Stack : 4.91 m ²		AV
C.	Analysis/Characteristic of stack: Fuel used :	2. Fuel Consumpt	ion :
D.	Result of sampling & analysis of gaseous emission	Result	Method
1.	Temperature of emmission (° c)	54	IS 11255 (Part III),2008RA 2018
2.	Barometric pressure (mm of Hg)	755	IS 11255 (Part III),2008RA 2018
3.	Velocity of gas (m/s)	13.29	IS 11255 (Part III),2008RA 2018
4.	Quantity of gas flow (Nm3/hr)	187001.84	IS 11255 (Part III),2008RA 2018
5.	Concentration of Particulate Matters (mg/Nm³)	83.0	IS 11255 (Part I):1985,RA 2014
6.	Concentration of Gaseous Fluoride (mg/Nm³)	0.86	USEPA-13B - 20/08/1996
7.	Concentration of Amonia (mg/Nm³)	75.0	IS 11255 (Part 6) -1999; Rffm: 2003
E.	Pollution control device	. A Stage Sorub	hor
1.	Details of pollution control devices attached with the stack	: 4 Stage Scrub	DUCI
F.	Remarks : Nil		

Report Proposed By (A)

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

ANALYTICAL CONSULTING & TECHNICAL CHEMISTS

(AN ISO 9001:2015 & ISO 45001: 2018 CERTIFIED COMPANY)

9, BENTINCK STREET, KOLKATA - 700 001

Phone: (033) 4044-3380/3381/3382 / 3383, Fax: 33 2248-0447 E-mail: rvbriggs.kolkata@gmail.com, Website: www.rvbriggs.com

CIN: U51109WB1931PTC007007

TEST REPORT

No. AP-FG/22-23/1340	Date: February 20, 2023	Page 1 of 2
Issued to : M/S. INDORAMA INDIA PRIVATE LIMITED		MITED
Address	: P.O.: Durgachak, Haldia, Dist: Purba Mednipour, Pin: 721602	
Your Ref. P.O. No.	: 4700017754, dtd. 27.10.2022	Parameters Tested
Sample Description		Physical: Temp., Velocity, Gas flow
Date & time of sampling	: 17.02.2023 at 10:40 A.M. to 11:30 A.M.	Chemical: CO, CO ₂ , F, NH ₃ & PM

A. General information about stack :

1. Stack connected to

: DAP - 1

2. Emission due to

Test Completed on

: Vapours Generated from Process Reaction, Granulation Screening,

Milling & Drying Operation

3. Material of construction of stack

: M.S.

4. Shape of stack

: Circular.

5. Whether stack is provided with permanent platform & ladder: Yes.

: 20.02.2023

B. Physical characteristics of stack:

1. Height of the stack

(a) from ground level: 42.0 M

(b) from roof level: ---

(b) at top : ---

2. Diameter of the stack

(a) at bottom

: 2.5 M

3. Diameter of the stack at sampling point

. 2.5 111

No. of Traverse point

: 32 Nos.

5. Height of the sampling point from GL

: 40.0 M

C. Analysis / Characteristic of stack :

1. Fuel used : --

2. Load: 30 PTH

Denomatria proggura : 757 mmHg

D	D. Results of Physical Parameters of Flue Gas:		Darometric pressure . 757 mmrs		
SI No	Test Parameters	Test Method	Unit	Results	
1.	Temperature of emission	IS 11255 (Part 3): 2008	°C	40	
2.	Velocity of gas in duct	IS 11255: (Part 3): 2008	m/sec	12.18	
51000	Quantity of gas flow	IS 11255: (Part 3): 2008	NM ³ /hr	178815	

F Results of gaseous emission :

SI No	Test Parameters	Test Method	Unit	Results	Norms as per CPCB
1	Carbon monoxide	IS 13270 (By Orsat) : 1992	% v/v	< 0.2	Not Available
2.	Carbon dioxide	IS 13270 (By Orsat) : 1992	% v/v	0.2	Not Available
3.	Particulate Matters	IS 11255 : (Part 1) : 1985	mg/Nm ³	20	150 max.
4.	Gasous Fluoride	IS 11255 (Part 5): 1990	mg/Nm ³	2.84	Not Available
5.	Ammonia as NH ₃	Methods of Air Sampling & Analysis, 3rd Ed. (Indophenol Method), Method 401	mg/Nm ³	44.0	Not Available

F. Pollution control device

Details of pollution control devices attached with the stack: NH3 Scrubber, Gas Scrubber & Fluoride Scrubber.

Report Verified by

-: END OF TEST REPORT :-

(Dr. R. KARIM) Technical Manager

Authorised Signatory
For R.V.BRIGGS & CO. (P) LTD.

★ The test report shall not be reproduced, except in full, without written approval of the Company.

★ Results relate only to the parameters tested.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -4354 Date: 28.02.2023

Sample No.: MSKGL/ED/2022-23/01/01416

Sample Description: Stack Monitoring

Sample Mark: DAP-1

Date & Time of Sampling :30.01.2023

at 12.54 PM

Reference No.& Date: 4700013395 ,Dtd: 02.08.2021

ANALYSIS RESULT

Α.	General information about stack :		The state of the s	
1.	Stack connected to	: DAP-1		
2.	Emission due to	: Vapour & Dryins	Generation from proce g operation	ess reaction; Granulation, Screening Milling
3.	Material of construction of Stack	: MS		
4.	Shape of Stack	: Circular		
5.	Whether stack is provided with permanent pl	atform & ladder	Yes	
-6.	capacity	:	THE RESERVE OF THE PERSON NAMED IN	oad - 40 TPH
d .	Physical characteristics of stack :			
1.	Height of the stack from ground level	: 42 m		
2.	Diameter of the stack at sampling point	: 2.5 m		
3.	Height of the Sampling Point from Ground le	evel :40 m		
4.	Area of Stack	: 4.91 m ²		
C.	Analysis/Characteristic of stack:			
1.	Fuel used :		2. Fuel Consump	tion:
D.	Result of sampling & analysis of gase	ous emission	Result	Method
1.	Temperature of emmission (° c)		52	IS 11255 (Part III),2008RA 2018
2.	Barometric pressure (mm of Hg)		756	IS 11255 (Part III),2008RA 2018
3.	Velocity of gas (m/s)		14.1	IS 11255 (Part III),2008RA 2018
4.	Quantity of gas flow (Nm3/hr)		196453	IS 11255 (Part III),2008RA 2018
5.	Concentration of Carbon monoxide (% v	(v)	<0.2	IS 13270:1992, Rffm 2009
6.	Concentration of Oxygen (% v/v)		18.4	IS:13270 :1992 Reaff,2014
7.	Concentration of Carbondioxide (% v/v)		1.0	IS:13270 :1992 Reaff,2014
8.	Concentration of Particulate Matters (mg	/Nm ³)	51.3	IS 11255 (Part I):1985,RA 2014
- 9.	Moisture content (%)		13.4	IS 11255 (Part III),2008RA 2018
10.	Concentration of Gaseous Fluoride (mg/	Nm³)	1.1	US EPA part 13 A_(O)
11.	Concentration of Amonia (mg/Nm³)		273.5	IS 11255 (Part 6) -1999; Rffm: 2003
E.	Pollution control device Details of pollution control devices attach	ned with the star	ck : 5 Stage Scrub	ober
F.	Remarks : Nil	COMPANIES AND ADDRESS OF THE PARTY OF THE PA		

Report Prepared By

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

ANALYTICAL CONSULTING & TECHNICAL CHEMISTS

(AN ISO 9001:2015 & ISO 45001: 2018 CERTIFIED COMPANY)

TAHER MANSION, 1ST FLOOR

9, BENTINCK STREET, KOLKATA - 700 001

Phone: (033) 4044-3380/3381/3382 / 3383, Fax: 33 2248-0447 E-mail: rvbriggs.kolkata@gmail.com, Website: www.rvbriggs.com

CIN: U51109WB1931PTC007007

No. AP-FG/22-23/988 Date: Decem

Date: December 16, 2022

Page 1 of 2

Issued to : M/S. INDORAMA INDIA PRIVATE LIMITED

Address : P.O.: Durgachak, Haldia, Dist: Purba Mednipour, Pin: 721602

Your Ref. P.O. No. : 4700017754, dtd. 27.10.2022

4700017754, dtd. 27.10.2022 <u>Parameters Tested</u>

Sample Description : Stack Gas

: 15.12.2022 at 11:30 A.M. to 12:18 P.M.

Physical: Temp., Velocity, Gas flow *Chemical*: CO, CO₂, F, NH₃ & PM

Test Completed on : 16.12.2022

A. General information about stack:

1. Stack connected to

Date & time of sampling

: DAP - 1

2. Emission due to

: Vapours Generated from Process Reaction, Granulation Screening,

Milling & Drying Operation

3. Material of construction of stack

: M.S.

4. Shape of stack

: Circular.

5. Whether stack is provided with permanent platform & ladder: Yes.

B. Physical characteristics of stack :

1. Height of the stack

(a) from ground level: 42.0 M

(b) from roof level: ---

2. Diameter of the stack

(a) at bottom : --

(b) at top : ---

3. Diameter of the stack at sampling point

: 2.5 M

4. No. of Traverse point

: 32 Nos.

5. Height of the sampling point from GL

: 40.0 M

C. Analysis / Characteristic of stack:

1. Fuel used :---

2. Load: 40 PTH

D. Results of Physical Parameters of Flue Gas :			Barometric pressure: 759 mmHg		
SINo		Test Method	Unit	Results	
	Temperature of emission	IS 11255 (Part 3): 2008	°C	55	
1	Velocity of gas in duct	IS 11255: (Part 3): 2008	m/sec	12.44	
3.	Quantity of gas flow	IS 11255: (Part 3): 2008	NM³/hr	175220	

F Results of gaseous emission :

SI No	Test Parameters	Test Method	Unit	Results	Norms as per CPCB
1.	Carbon monoxide	IS 13270 (By Orsat) : 1992	% v/v	<0.2	Not Available
2.	Carbon dioxide	IS 13270 (By Orsat) : 1992	% v/v	0.2	Not Available
3.	Particulate Matters	IS 11255 : (Part 1) : 1985	mg/Nm ³	72	150 max.
4.	Gasous Fluoride	IS 11255 (Part 5): 1990	mg/Nm ³	0.83	Not Available
5.	Ammonia as NH ₃	Methods of Air Sampling & Analysis, 3rd Ed. (Indophenol Method), Method 401	mg/Nm ³	59.9	Not Available

F. Pollution control device

Details of pollution control devices attached with the stack: NH3 Scrubber, Gas Scrubber & Fluoride Scrubber.

-: END OF TEST REPORT :-

Report Verified by S. Mondal

(Dr. R. KARIM)

<u>Technical Manager</u>

Authorised Signatory

For R.V.BRIGGS & CO. (P) LTD.

* Results relate only to the parameters tested.

[★] The test report shall not be reproduced, except in full, without written approval of the Company.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -3098 **Date**: 30.11.2022

Sample No.: MSKGL/ED/2022-23/11/00774
Sample Description: Stack Monitoring

Sample Mark: DAP-1

Date & Time of Sampling :11.11.2022

at 11.47 AM

Reference No.& Date: 4700013395 ,Dtd: 02.08.2021

ANALYSIS RESULT

Α.	General information about stack :			
1.	Stack connected to	: DAP-1	- A	
2.	Emission due to	: Vapour Ge & Drying o		ss reaction; Granulation, Screening Milling
3.	Material of construction of Stack	: MS	peration	
4.	Shape of Stack	: Circular	THE SECTION	
5.	Whether stack is provided with permanent platform & ladder : Yes			
6.	capacity	:		oad - 40 TPH
В.	Physical characteristics of stack :			
1.	Height of the stack from ground level	42 m		
2.	Diameter of the stack at sampling point :	2.5 m		
3.	Height of the Sampling Point from Ground level	:40 m		
4.	The state of the s	: 4.91 m ²		
C.	Analysis/Characteristic of stack: Fuel used :		2. Fuel Consump	tion :
1. D.	Result of sampling & analysis of gaseous	emission	Result	Method
1.	Temperature of emmission (° c)		54	IS 11255 (Part III),2008RA 2018
2.	Barometric pressure (mm of Hg)		755	IS 11255 (Part III),2008RA 2018
3.	Velocity of gas (m/s)	1	10.7	IS 11255 (Part III),2008RA 2018
4.	Quantity of gas flow (Nm3/hr)	1	158277	IS 11255 (Part III),2008RA 2018
5.	Concentration of Carbon monoxide (% v/v)	T No.	<0.2	IS 13270:1992, Rffm 2009
6.	Concentration of Oxygen (% v/v)		18.2	IS:13270 :1992 Reaff,2014
7.	Concentration of Carbondioxide (% v/v)		1.0	IS:13270 :1992 Reaff,2014
8.	Concentration of Particulate Matters (mg/Nm³	3)	86.7	IS 11255 (Part I):1985,RA 2014
9.	Moisture content (%)		7.45	IS 11255 (Part III),2008RA 2018
10.	Concentration of Gaseous Fluoride (mg/Nm³))	0.97	USEPA-13B - 20/08/1996
11.	Concentration of Amonia (mg/Nm³)		262.5	IS 11255 (Part 6) -1999; Rffm: 200
E .		vith the stack	: 5 Stage Scrub	bber
F.	Remarks : Nil			

Report Prepared By

for Mitra S. Reivate Limited

Authorised Signatory

• The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel. : 91 33 40143000 / 22650006 / 22650007 Fax : 91 33 22650008

Email: info@mitrask.com. Website: www.mitrask.com

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. : WB/ED -4698 Date : 30.03.2023

Sample Description: Stack Monitoring

Sample Mark: DAP-2

Date & Time of Sampling: 08.03.2023

at 11.00 am

Reference No.& Date: 4700017438 ,Dtd: 13.09.2022

ANALYSIS RESULT

Α.	General information about stack :		
1.	Stack connected to : DAP-2		
2.	Emission due to :Vapour Ger & Drying o		s reaction; Granulation, Screening Milling
3.	Material of construction of Stack : MS		
4.	Shape of Stack : Circular		
5.	Whether stack is provided with permanent platform & ladder: Y	es	
6.	capacity :	Worl	king Load - 50 TPH
В.	Physical characteristics of stack :	7	
1.	Height of the stack from ground level : 42 m		
2.	Diameter of the stack at sampling point : 2.5 m	100	A STATE OF THE STA
3.	Height of the Sampling Point from Ground level : 40.0 m	No.	
4.	Area of Stack : 4.91 m ²		
C.	Analysis/Characteristic of stack: Fuel used : Briquette	2. Fuel Consumpt	ion : 0.5 Ton/hr
D.	Result of sampling & analysis of gaseous emission	Result	Method
1.	Temperature of emmission (°c)	57	IS 11255 (Part III),2008RA 2018
2.	Barometric pressure (mm of Hg)	756	IS 11255 (Part III),2008RA 2018
3.	Velocity of gas (m/s)	13.78	IS 11255 (Part III),2008RA 2018
4.	Quantity of gas flow (Nm3/hr)	196788.81	IS 11255 (Part III),2008RA 2018
5.	Concentration of Particulate Matters (mg/Nm³)	76.0	IS 11255 (Part I):1985,RA 2014
6.	Concentration of Gaseous Fluoride (mg/Nm³)	1.1	USEPA-13B - 20/08/1996
7.	Concentration of Amonia (mg/Nm³)	125.0	IS 11255 (Part 6) -1999; Rffm: 2003
E. 1.	Pollution control device Details of pollution control devices attached with the stack	: 5 Stage Scrubl Venturies Scru	pers (NH3, Scrubber;Gas Scrubber, bber & Fluoride Scrubber)
F.	Remarks : Nil		

Report Properted By (Paly)

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

ANALYTICAL CONSULTING & TECHNICAL CHEMISTS

(AN ISO 9001:2015 & ISO 45001: 2018 CERTIFIED COMPANY)

TAHER MANSION, 1ST FLOOR

9, BENTINCK STREET, KOLKATA - 700 001

Phone: (033) 4044-3380/3381/3382 / 3383, Fax: 33 2248-0447 E-mail: rvbriggs.kolkata@gmail.com, Website: www.rvbriggs.com

CIN: U51109WB1931PTC007007

TEST REPORT

No. AP-FG/22-23/1341	Date: February 20, 202	Page 1 of 2	
Issued to : M/S. INDORAMA INDIA PRIVATE LIMITED		MITED	
Address	: P.O.: Durgachak, Haldia, Dist: Purba Mednipour, Pin: 721602		
Your Ref. P.O. No.	: 4700017754, dtd. 27.10.2022	Parameters Tested	
Sample Description	: Stack Gas	Physical: Temp., Velocity, Gas flow	
Date & time of sampling	: 17.02.2023 at 09:27 A.M. to 10:09 A.M.	Chemical: CO, CO ₂ , F, NH ₃ & PM	
Test Completed on	: 20.02.2023		

A. General information about stack :

Stack connected to

: DAP - 2

2. Emission due to

: Vapours Generated from Process Reaction, Granulation Screening,

Milling & Drying Operation

3. Material of construction of stack

: M.S.

4. Shape of stack

3.

: Circular.

5. Whether stack is provided with permanent platform & ladder: Yes.

B. Physical characteristics of stack:

1. Height of the stack

(a) from ground level: 42.0 M

(b) from roof level: ---

(b) at top : ---

2. Diameter of the stack

(a) at bottom

: 2.5 M

4. No. of Traverse point

: 32 Nos.

5. Height of the sampling point from GL

Diameter of the stack at sampling point

: 40.0 M

C. Analysis / Characteristic of stack :

. Fuel used : ---

2. Load: 52 TPH

D.	Results of Physical Paramete	rs of Flue Gas :	Barometric pressur	e: 757 mmHg	
SINo	Test Parameters	Test Method	Unit	Results	
1.	Temperature of emission	IS 11255 (Part 3): 2008	°C	57	
2.	Velocity of gas in duct	IS 11255: (Part 3): 2008	m/sec	13.57	
3.	Quantity of gas flow	IS 11255: (Part 3): 2008	NM ³ /hr	193042	

E. Results of gaseous emission

SI No	Test Parameters	Test Method	Unit	Results	Norms as per CPCB
1.	Carbon monoxide	IS 13270 (By Orsat) ; 1992	% v/v	< 0.2	Not Available
2.	Carbon dioxide	IS 13270 (By Orsat): 1992	% v/v	0.2	Not Available
3.	Particulate Matters	IS 11255 : (Part 1) : 1985	mg/Nm ³	35	150 max.
4.	Gasous Fluoride	IS 11255 (Part 5): 1990	mg/Nm ³	2.02	Not Available
5.	Ammonia as NH ₃	Methods of Air Sampling & Analysis, 3rd Ed. (Indophenol Method), Method 401	mg/Nm ³	68.4	Not Available

F. Pollution control device

Details of pollution control devices attached with the stack: NH₃ Scrubber, Gas Scrubber & Fluoride Scrubber.

Report Verified by
S. Mondal

-: END OF TEST REPORT :-

(Dr. R. KARIM)

Technical Manager

Authorised Signatory

For R.V.BRIGGS & CO. (P) LTD.

Results relate only to the parameters tested.

[★] The test report shall not be reproduced, except in full, without written approval of the Company.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE, LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -4353 Date: 28.02.2023

Sample No.: MSKGL/ED/2022-23/01/01415 Sample Description: Stack Monitoring

Sample Mark: DAP-2

Date & Time of Sampling :30.01.2023

at 11.32 AM

Reference No.& Date: 4700017438 ,Dtd: 13.09.2022

ANALYSIS RESULT

Α.	General information about stack :			
1.	Stack connected to : DAP-2			
2.		:Vapour Generation from process reaction; Granulation, Screening Milling & Drying operation		
3.	Material of construction of Stack : MS			
4.	Shape of Stack : Circular			
5.	Whether stack is provided with permanent platform & ladder: \	/es		
6.	capacity :		ing Load - 70 TPH	
В.	Physical characteristics of stack :			
1.	Height of the stack from ground level : 42 m			
2.	Diameter of the stack at sampling point : 2.5 m			
3.	Height of the Sampling Point from Ground level : 40.0 m			
4.	Area of Stack : 4.91 m ²			
C.	Analysis/Characteristic of stack: Fuel used :	2. Fuel Consumpti	ion :	
D.	Result of sampling & analysis of gaseous emission	Result	Method	
1.	Temperature of emmission (°c)	56	IS 11255 (Part III),2008RA 2018	
2.	Barometric pressure (mm of Hg)	756	IS 11255 (Part III),2008RA 2018	
3.	Velocity of gas (m/s)	13.69	IS 11255 (Part III),2008RA 2018	
4.	Quantity of gas flow (Nm3/hr)	195922	IS 11255 (Part III),2008RA 2018	
5.	Concentration of Carbon Monoxide (% v/v)	<0.2	IS 13270 : 1992	
6.	Concentration of Oxygen (% v/v)	17.8	IS 13270 : 1992	
7.	Concentration of Carbon Dioxide (% v/v)	1.4	IS 13270 : 1992	
3.	Concentration of Particulate Matters (mg/Nm³)	56.9	IS 11255 (Part I):1985,RA 2014	
9.	Moisture content (%)	9.6	IS: 11255 (Part 3): 2008	
10.	Concentration of Gaseous Fluoride (mg/Nm³)	1.05	US EPA part 13 A_(O)	
11.	Concentration of Amonia (mg/Nm³)	264.8	IS 11255 (Part 6): 1999	
E. 1.	Pollution control device Details of pollution control devices attached with the stack	5 Stage Scrubb Venturies Scrub	pers (NH3, Scrubber;Gas Scrubber, bber & Fluoride Scrubber)	
F.	Remarks : Nil			

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

ANALYTICAL CONSULTING & TECHNICAL CHEMISTS

(AN ISO 9001:2015 & ISO 45001: 2018 CERTIFIED COMPANY)

TAHER MANSION, 1ST FLOOR

9, BENTINCK STREET, KOLKATA - 700 001

Phone: (033) 4044-3380/3381/3382 / 3383, Fax: 33 2248-0447 E-mail: rvbriggs.kolkata@gmail.com, Website: www.rvbriggs.com

CIN: U51109WB1931PTC007007

TEST REPORT

Page 1 of 2 Date: December 17, 2022 No. AP-FG/22-23/1003

: M/S. INDORAMA INDIA PRIVATE LIMITED Issued to

: P.O.: Durgachak, Haldia, Dist: Purba Mednipour, Pin: 721602 Address

Parameters Tested : 4700017754, dtd. 27.10.2022 Your Ref. P.O. No.

Physical: Temp., Velocity, Gas flow : Stack Gas Sample Description

Chemical: CO, CO2, F, NH3 & PM : 16.12.2022 at 11:20 A.M. to 12:02 P.M. Date & time of sampling

Test Completed on : 17.12.2022

General information about stack:

Stack connected to : DAP - 2 1.

: Vapours Generated from Process Reaction, Granulation Screening, 2 Emission due to

Milling & Drying Operation

: M.S. Material of construction of stack

: Circular. Shape of stack 4.

Whether stack is provided with permanent platform & ladder: Yes. 5.

Physical characteristics of stack:

Height of the stack (a) from ground level: 42.0 M 1.

(b) from roof level: ---

2. Diameter of the stack (a) at bottom

: 2.5 M

(b) at top : ---

Diameter of the stack at sampling point 3. No. of Traverse point 4.

: 32 Nos.

Height of the sampling point from GL

: 40.0 M

Analysis / Characteristic of stack: C.

2. Load: 70 TPH Fuel used : ---

Barometric pressure: 759 mmHg Results of Physical Parameters of Flue Gas: D. Results Unit Test Method Test Parameters SI No 54 °C Temperature of emission IS 11255 (Part 3): 2008 1. 13.62 IS 11255: (Part 3): 2008 m/sec Velocity of gas in duct 2. 197136 NM³/hr IS 11255: (Part 3): 2008 Quantity of gas flow 3.

SI No	Test Parameters	Test Method	Unit	Results	Norms as per CPCB
1.	Carbon monoxide	IS 13270 (By Orsat): 1992	% v/v	< 0.2	Not Available
2.	Carbon dioxide	IS 13270 (By Orsat): 1992	% v/v	0.2	Not Available
3.	Particulate Matters	IS 11255 : (Part 1) : 1985	mg/Nm ³	94	150 max.
4.	Gasous Fluoride	IS 11255 (Part 5): 1990	mg/Nm ³	0.66	Not Available
5.	Ammonia as NH ₃	Methods of Air Sampling & Analysis, 3rd Ed. (Indophenol Method), Method 401	mg/Nm ³	87.9	Not Available

Pollution control device

Details of pollution control devices attached with the stack: NH3 Scrubber, Gas Scrubber & Fluoride Scrubber.

-: END OF TEST REPORT :-

Report Verified by S. Mondal

(Dr. R. KARIM) Technical Manager **Authorised Signatory** For R.V.BRIGGS & CO. (P) LTD.

The test report shall not be reproduced, except in full, without written approval of the Company.

Results relate only to the parameters tested.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -3288 Date: 06.12.2022

Sample Description: Stack Monitoring

Sample Mark: DAP-2

Date & Time of Sampling: 30.11.2022

Reference No.& Date: 4700017438 ,Dtd: 13.09.2022

ANALYSIS RESULT

Α.	General information about stack :				
1.	Stack connected to : DAP-2				
2.	Emission due to :Vapour Go & Drying		s reaction; Granulation, Screening Milling		
3.	Material of construction of Stack : MS		The state of the s		
4.	Shape of Stack : Circular	: Circular			
5.	Whether stack is provided with permanent platform & ladder:	Yes			
6.	capacity :	Worl	king Load - 70 TPH		
В.	Physical characteristics of stack :				
1.	Height of the stack from ground level : 42 m				
2.	Diameter of the stack at sampling point : 2.5 m	Th.	The state of the s		
3.	Height of the Sampling Point from Ground level : 40.0 m				
4.	Area of Stack : 4.91 m ²				
C. 1.	Analysis/Characteristic of stack: Fuel used : Briquette	2. Fuel Consumpt	tion: 0.5 Ton/hr		
D.	Result of sampling & analysis of gaseous emission	Result	Method		
1.	Temperature of emmission (°c)	57	IS 11255 (Part III),2008RA 2018		
2.	Barometric pressure (mm of Hg)	756	IS 11255 (Part III),2008RA 2018		
3.	Velocity of gas (m/s)	13.71	IS 11255 (Part III),2008RA 2018		
4.	Quantity of gas flow (Nm3/hr)	197216.13	IS 11255 (Part III),2008RA 2018		
5.	Concentration of Particulate Matters (mg/Nm³)	85.0	IS 11255 (Part I):1985,RA 2014		
6.	Concentration of Gaseous Fluoride (mg/Nm³)	0.67	USEPA-13B - 20/08/1996		
7.	Concentration of Amonia (mg/Nm³)	82.0	IS 11255 (Part 6) -1999; Rffm: 2003		
E .	Pollution control device Details of pollution control devices attached with the stace		bers (NH3, Scrubber;Gas Scrubber, bber & Fluoride Scrubber)		
F.	Remarks : Nil				

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -4700 Date: 30.03.2023

Sample Description: Stack Monitoring

Sample Mark: SSP-Ball Mill

Date & Time of Sampling:03.03.2023

at 02.00 pm

Reference No.& Date: 4700017438 , Dtd: 13.09.2022

ANALYSIS RESULT

Α.	General information about stack :			
1.	Stack connected to	: SSP - Ball	Mill	
2.	Emission due to	:Milling Op	eration	
3.	Material of construction of Stack	: MS		
4.	Shape of Stack	: Circular	46.	
5.	Whether stack is provided with permanent platfor	rm & ladder : Y	'es	
6.	capacity		Working Loa	d - 12 TPH
В.	Physical characteristics of stack:			
1.	Height of the stack from ground level	: 34.3 m	V Comment	
2.	Diameter of the stack at sampling point	: 0.7 m		
3.	Height of the Sampling Point from Ground level	: 31.5 m	WALL CONTROLLED	
4.	Area of Stack	: 0.39 m		
C.	Analysis/Characteristic of stack:		170	
1.	Fuel used :		2. Fuel Consum	otion :
D.	Result of sampling & analysis of gaseous	emission	Result	Method
1.	Temperature of emission (°C)	NE. AS	46	IS 11255 (Part III),2008RA 2018
2.	Barometric pressure (mm of Hg)		757	Lab Method
3.	Velocity of gas (m/sec.)		8.97	IS 11255 (Part III),2008RA 2018
4.	Quantity of Gas Flow (Nm³/hr)		11269.39	IS 11255 (Part III),2008RA 2018
5.	Concentration of Particulate Matter (mg/Nm	3)	47.0	USEPA-13B - 20/08/1996
E.	Pollution control device			
1.	Details of pollution control devices attached	with the stack	: Cyclone Bag I	Filter
F.	Remarks : Nil	AND AND		

Report Prepared By (Ally)

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -4431 Date: 09.03.2023

Sample Description: Stack Monitoring

Sample Mark: SSP-Ball Mill

Date & Time of Sampling: 24.02.2023

at 02.30 pm

Reference No.& Date: 4700017438 , Dtd: 13.09.2022

ANALYSIS RESULT

A .	General information about stack :		
1.	Stack connected to : SSP - Bal	l Mill	
2.	Emission due to :Milling Op	peration	
3.	Material of construction of Stack : MS		
4.	Shape of Stack : Circular		
5.	Whether stack is provided with permanent platform & ladder:	Yes	
6.	capacity ;	Working Load -	15 TPH
3.	Physical characteristics of stack :		
1.	Height of the stack from ground level : 34.3 m		
2.	Diameter of the stack at sampling point : 0.7 m		
3.	Height of the Sampling Point from Ground level : 31.5 m		
4.	Area of Stack :		
C.	Analysis/Characteristic of stack:	2 P. 10 - 2	
1.	Fuel used : Result of sampling & analysis of gaseous emission	2. Fuel Consumption	T
D.		Result	Method
1.	Temperature of emission (°C)	47	IS 11255 (Part III),2008RA 2018
2.	Barometric pressure (mm of Hg)	756	Lab Method
3.	Velocity of gas (m/sec.)	8.77	IS 11255 (Part III),2008RA 2018
4.	Quantity of Gas Flow (Nm³/hr)	11012.11	IS 11255 (Part III),2008RA 2018
5.	Concentration of Particulate Matter (mg/Nm³)	56.0	USEPA-13B - 20/08/1996
E .	Pollution control device Details of pollution control devices attached with the stack	: Cyclone Bag Fill	ter
F.	Remarks : Nil		

Report Prepared By

for Mitra S. K. Private Limited

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -3650 Date: 12.01.2023

Sample Description: Stack Monitoring

Sample Mark: SSP-Ball Mill

Date & Time of Sampling: 26.12.2022

at 01.50 pm

Reference No.& Date: 4700017438 , Dtd: 13.09.2022

ANALYSIS RESULT

A .	General information about stack :			
1.	Stack connected to : SSP - Ball Mill			
2.	Emission due to :Millin	:Milling Operation		
3.	Material of construction of Stack : MS		The state of the s	
4.	Shape of Stack : Circu	ilar		
5.	Whether stack is provided with permanent platform & ladd	ler : Yes		
6.	capacity :	Working Load -	- 15 TPH	
В.	Physical characteristics of stack :	ASSERT FOR		
1.	Height of the stack from ground level : 34.3 m		197	
2.	Diameter of the stack at sampling point : 0.7 m			
3.	Height of the Sampling Point from Ground level : 31.5 m			
4.	Area of Stack : 0.385 r	n^2		
C.	Analysis/Characteristic of stack:	76.176	. 1	
1.	Fuel used :	2. Fuel Consumpti	ion :	
D.	Result of sampling & analysis of gaseous emission	n Result	Method	
1.	Temperature of emission (°C)	46	IS 11255 (Part III),2008RA 2018	
2.	Barometric pressure (mm of Hg)	756	Lab Method	
3.	Velocity of gas (m/sec.)	9.30	IS 11255 (Part III),2008RA 2018	
4.	Quantity of Gas Flow (Nm³/hr)	11668.57	IS 11255 (Part III),2008RA 2018	
5.	Concentration of Particulate Matter (mg/Nm³)	53.0	USEPA-13B - 20/08/1996	
E.	Pollution control device			
1.	Details of pollution control devices attached with the s	stack : Cyclone Bag Fi	lter	
F.	Remarks : Nil			

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -3290 Date: 06.12.2022

Sample Description: Stack Monitoring

Sample Mark: SSP-Ball Mill

Date & Time of Sampling: 29.11.2022

Reference No.& Date: 4700017438 , Dtd: 13.09.2022

ANALYSIS RESULT

Α.	General information about stack :		40 h	
1.	Stack connected to : SSP -	Ball Mill		
2.	Emission due to :Milling	:Milling Operation		
3.	Material of construction of Stack : MS			
4.	Shape of Stack : Circu	lar		
5.	Whether stack is provided with permanent platform & ladd	er : Yes		
6.	capacity :	Working Load	- 10.5 TPH	
В.	Physical characteristics of stack :	AND A		
1.	Height of the stack from ground level : 34.3 m			
2.	Diameter of the stack at sampling point : 0.7 m			
3.	Height of the Sampling Point from Ground level : 31.5 m			
4.	Area of Stack : 0.385 n	n^2		
C.	Analysis/Characteristic of stack:	The Late of the la		
1.	Fuel used :	2. Fuel Consumpt	ion :	
D.	Result of sampling & analysis of gaseous emissio	n Result	Method	
1.	Temperature of emission (°C)	46	IS 11255 (Part III),2008RA 2018	
2.	Barometric pressure (mm of Hg)	756	Lab Method	
3.	Velocity of gas (m/sec.)	8.96	IS 11255 (Part III),2008RA 2018	
4.	Quantity of Gas Flow (Nm³/hr)	11241.98	IS 11255 (Part III),2008RA 2018	
5.	Concentration of Particulate Matter (mg/Nm³)	40.0	USEPA-13B - 20/08/1996	
Ε.	Pollution control device	The state of the s		
1.	Details of pollution control devices attached with the s	tack : Cyclone Bag F	ilter	
F.	Remarks : Nil			

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -2983 **Date**: 04.11.2022

Sample Description: Stack Monitoring

Sample Mark: SSP-Ball Mill

Date & Time of Sampling:31.10.2022

at 03.00 pm

Reference No.& Date: 4700017438 , Dtd: 13.09.2022

ANALYSIS RESULT

Α.	General information about stack :			
1.	Stack connected to : SSP - Ball Mill			
2.	Emission due to :Milling Op	:Milling Operation		
3.	Material of construction of Stack : MS			
4.	Shape of Stack : Circular	ape of Stack : Circular		
5.	Whether stack is provided with permanent platform & ladder:	Yes		
6.	capacity :	Working Load -	10.5 TPH	
В.	Physical characteristics of stack :			
1.	Height of the stack from ground level : 34.3 m			
2.	Diameter of the stack at sampling point : 0.7 m			
3.	Height of the Sampling Point from Ground level : 31.5 m			
4.	Area of Stack : 0.385 m ²			
C.	Analysis/Characteristic of stack:		Ja Ta	
1.	Fuel used :	2. Fuel Consumption	on :	
D.	Result of sampling & analysis of gaseous emission	Result	Method	
1.	Temperature of emission (°C)	98	IS 11255 (Part III),2008RA 2018	
2.	Barometric pressure (mm of Hg)	756	Lab Method	
3.	Velocity of gas (m/sec.)	8.89	IS 11255 (Part III),2008RA 2018	
4.	Quantity of Gas Flow (Nm³/hr)	11083.48	IS 11255 (Part III),2008RA 2018	
5.	Concentration of Particulate Matter (mg/Nm³)	53.0	USEPA-13B - 20/08/1996	
E.	Pollution control device	A van e van		
1.	Details of pollution control devices attached with the stack	k : Cyclone Bag Fil	ter	
F.	Remarks : Nil	·		

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -4701 Date : 30.03.2023

Sample Description: Stack Monitoring Sample Mark: SSP Fluoride Scrubber Date & Time of Sampling:03.03.2023

At 03.10 PM

Reference No.& Date: 4700013395 ,Dtd: 02.08.2021

ANALYSIS RESULT

Α.	General information about stack :		400	
1.	Stack connected to : SS	SP Fluoride Scrubb	er A	
2.	Emission due to : Pr	due to : Process Reaction , Vapour		
3.	Material of construction of Stack : M	S	ds.	
4 .	Shape of Stack : Ci	rcular	No.	
5.	Whether stack is provided with permanent platform & la	adder : Yes	1	
6.	capacity :	- W	orking Load- 25	TPH
В.	Physical characteristics of stack :			
1.	Height of the stack from ground level : 40 m	ı	BEEN A	
2.	Diameter of the stack at sampling point : 1.5	m		
3.	Height of the Sampling Point from Ground level : 25.0	m		
4.	Area of Stack : 1.76	66 m ²		
C.	Analysis/Characteristic of stack:	- W W	L A	
1.	Fuel used :		Consumption:	per con
D.	Result of sampling & analysis of gaseous emiss	sion R	esult	Method
1.	Temperature of emmission (°C)		70	
2.	Barometric pressure (mm of Hg)			3 11255 (Part III),2008RA 2018
3.	Velocity of gas (m/s)		2.88	S 11255 (Part III),2008RA 2018
4.	Quantity of gas flow (Nm3/hr)	14	414.96 IS	5 11255 (Part III),2008RA 2018
5.	Concentration of Particulate Matters (mg/Nm3)		72.0	S 11255 (Part I):1985,RA 2014
6.	Concentration of Gaseous Fluoride (mg/Nm3)		1.73	USEPA-13B - 20/08/1996
E.	Pollution control device			
1.	Details of pollution control devices attached with th	e stack : 4 Sta	ge Fluoride Scr	ubber
F.	Remarks : Nil			

Report Prepared By With

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

ANALYTICAL CONSULTING & TECHNICAL CHEMISTS

(AN ISO 9001:2015 & ISO 45001: 2018 CERTIFIED COMPANY)

TAHER MANSION, 1ST FLOOR

9, BENTINCK STREET, KOLKATA - 700 001

Phone: (033) 4044-3380/3381/3382 / 3383, Fax: 33 2248-0447 E-mail: rvbriggs.kolkata@gmail.com, Website: www.rvbriggs.com

CIN: U51109WB1931PTC007007

TEST REPORT

No. AF	P-FG/22-23/1343	Date: February 20, 20	23		Page 1 of	
Issu	ied to	: M/S. INDORAMA INDIA PRIVATE LIMITED				
Add	ress	: P.O.: Durgachak, Haldia, Dist: Purba	Mednipour, Pin	721602		
You	r Ref. P.O. No.	: 4700017754, dtd. 27.10.2022		Parameters Tested		
Sam	ple Description	: Stack Gas	Physical : Ter			
	& time of sampling	: 17.02.2023 at 02:26 P.M. to 03:16 P.M.	CAR COLORS CO. LOSSES	DOMESTIC TOTAL SERVICE COMMO	The September of Control of the Cont	
	Completed on	: 20.02.2023	Concentration of	o, co ₂ , r & r	141	
A.	General information about					
1.	Stack connected to	: SSP Scrubber				
1970.0	Emission due to	: Process Activity				
	Material of construction of					
	Shape of stack	: Circular.				
5.	THE RESERVE THE PARTY OF THE PA	with permanent platform & ladder : Yes.				
B.	Physical characteristics	male and the second sec				
	Height of the stack	(a) from ground level : 40.0 M	(b) from roof l	evel :		
2.	Diameter of the stack	(a) at bottom :	(b) at top :			
3.	Diameter of the stack at sa	mpling point : 1.5 M				
	No. of Traverse point	: 20 Nos.				
5.	Height of the sampling poi	nt from GL : 25.0 M				
C.	Analysis / Characteristic	of stack:				
1.	Fuel used :		2. Load: 25 T	PH		
D.	Results of Physical Para	meters of Flue Gas :	Barometric pre	essure: 757 m	ımHg	
SI No	Test Parameters	Test Method	Unit	F	Results	
1.	Temperature of emission	IS 11255 (Part 3): 2008	°C		68	
2.	Velocity of gas in duct	IS 11255 : (Part 3) : 2008	m/sec		3.08	
3.	Quantity of gas flow	IS 11255: (Part 3): 2008	NM ³ /hr		15450	
E.	Results of gaseous emis	sion:				
SI No	Test Parameters	Test Method	Unit	Results	Norms as per CPCB	
1.	Carbon monoxide	IS 13270 (By Orsat): 1992	% v/v	<0.2	Not Available	
2.	Carbon dioxide	IS 13270 (By Orsat): 1992	% v/v	0.2	Not Available	
3.	Particulate Matters	IS 11255 : (Part 1) : 1985	mg/Nm ³	40	150 max.	
4.	Gasous Fluoride	IS 11255 (Part 5): 1990	mg/Nm ³	0.46	Not Available	
E.	Pollution control device		1	-1.12		

Details of pollution control devices attached with the stack: 4 Stage Water Scrubber.

-: END OF TEST REPORT :-

Report Verified by

S. Mondal

(Dr. R. KARIM) Technical Manager **Authorised Signatory**

For R.V.BRIGGS & CO. (P) LTD.

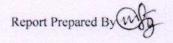
[★] The test report shall not be reproduced, except in full, without written approval of the Company.

^{*} Results relate only to the parameters tested.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE, LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -4355 Date : 28.02.2023


Sample No.: MSKGL/ED/2022-23/01/01417 Sample Description: Stack Monitoring Sample Mark: SSP Fluoride Scrubber Date & Time of Sampling: 30.01.2023

at 03.15 PM

Reference No.& Date: 4700013395 ,Dtd: 02.08.2021

ANALYSIS RESULT

A.	General information about stack :			
1.	Stack connected to : SSP Fluo	ride Scrubber		
2.	F	: SSP Fluoride Scrubber		
3.	Material of construction of Stack : MS			
4.	Shape of Stack : Circular			
5.	Whether stack is provided with permanent platform & ladder:	Yes		
6.	capacity :	Working Lo	ad- 20 TPH	
٦.	Physical characteristics of stack :		201111	
1.	Height of the stack from ground level : 40 m			
2.	Diameter of the stack at sampling point : 1.5 m			
3.	Height of the Sampling Point from Ground level : 25.0 m	***************************************		
4.	Area of Stack : 1.766 m ²			
C. 1.	Analysis/Characteristic of stack: Fuel used :	2. Fuel Consumpt		
D.	Result of sampling & analysis of gaseous emission	Result	Method	
1.	Temperature of emmission (° C)	69	IS 11255 (Part III),2008RA 2018	
2.	Barometric pressure (mm of Hg)	756	IS 11255 (Part III),2008RA 2018	
3.	Velocity of gas (m/s)	3.2	IS 11255 (Part III),2008RA 2018	
4.	Quantity of gas flow (Nm3/hr)	14828	IS 11255 (Part III),2008RA 2018	
5.	Concentration of Carbonmonoxide (% v/v)	<0.2	IS 13270:1992, Rffm 2009	
6.	Concentration of Oxygen (% v/v)	18.6	IS:13270 :1992 Reaff,2014	
7.	Concentration of Carbondioxide (% v/v)	1,0	IS:13270 :1992 Reaff,2014	
8.	Concentration of Particulate Matters (mg/Nm3)	70.1	IS 11255 (Part I):1985,RA 2014	
9.	Moisture content (%)	15.9	IS 11255 (Part III),2008RA 2018	
9.	Concentration of Gaseous Fluoride (mg/Nm3)	1.95	USEPA-13B - 20/08/1996	
E . 1.	Pollution control device Details of pollution control devices attached with the stack	: 4 Stage Fluorio	de Scrubber	
F.	Remarks : Nil			

- · The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

ANALYTICAL CONSULTING & TECHNICAL CHEMISTS

(AN ISO 9001:2015 & ISO 45001: 2018 CERTIFIED COMPANY)

TAHER MANSION, 1ST FLOOR 9. BENTINCK STREET, KOLKATA - 700 001

Phone: (033) 4044-3380/3381/3382 / 3383, Fax: 33 2248-0447 E-mail: rvbriggs.kolkata@gmail.com, Website: www.rvbriggs.com

CIN: U51109WB1931PTC007007

TEST REPORT

No. AP-FG/22-23/990 Date: December 16, 2022 Page 1 of 2 Issued to : M/S. INDORAMA INDIA PRIVATE LIMITED Address : P.O.: Durgachak, Haldia, Dist: Purba Mednipour, Pin: 721602 Your Ref. P.O. No. : 4700017754, dtd. 27.10.2022 Parameters Tested Physical: Temp., Velocity, Gas flow

: Stack Gas Sample Description

Date & time of sampling : 15.12.2022 at 03:00 P.M. to 03:52 P.M.

Test Completed on : 16.12.2022

General information about stack:

Stack connected to 1. : SSP Scrubber Emission due to 2. : Process Activity

Material of construction of stack 3.

Shape of stack : Circular. Whether stack is provided with permanent platform & ladder : Yes. 5.

Physical characteristics of stack: B.

Height of the stack (a) from ground level: 40.0 M (b) from roof level: ---

Chemical: CO, CO2, F & PM

2. Diameter of the stack

1.

(a) at bottom : --- (b) at top : ---

Diameter of the stack at sampling point 3.

No. of Traverse point : 20 Nos. 4.

Height of the sampling point from GL

Analysis / Characteristic of stack:

Fuel used 2. Load: 25 PTH 1.

: M.S.

: 1.5 M

: 25.0 M

Results of Physical Parameters of Flue Gas: D. Barometric pressure: 759 mmHg SI No Test Parameters Test Method Unit Results 70 Temperature of emission IS 11255 (Part 3): 2008 °C 1. Velocity of gas in duct IS 11255: (Part 3): 2008 m/sec 2.91 2. 14576 IS 11255: (Part 3): 2008 NM³/hr 3. Quantity of gas flow

Results of assenue emission

SI No	Test Parameters	Test Method	Unit	Results	Norms as per CPCB
1.	Carbon monoxide	IS 13270 (By Orsat): 1992	% v/v	< 0.2	Not Available
2.	Carbon dioxide	IS 13270 (By Orsat): 1992	% v/v	0.2	Not Available
3.	Particulate Matters	IS 11255 : (Part 1) : 1985	mg/Nm ³	59	150 max.
4.	Gasous Fluoride	IS 11255 (Part 5): 1990	mg/Nm ³	0.95	Not Available

Pollution control device

Details of pollution control devices attached with the stack : 4 Stage Water Scrubber.

-: END OF TEST REPORT :-

e.mon Report Verified by

S. Mondal

(Dr. R. KARIM)

Technical Manager **Authorised Signatory**

For R.V.BRIGGS & CO. (P) LTD.

★ Results relate only to the parameters tested.

The test report shall not be reproduced, except in full, without written approval of the Company.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -3100 **Date**: 30.11.2022

Sample No.: MSKGL/ED/2022-23/11/00776 Sample Description: Stack Monitoring Sample Mark: SSP Fluoride Scrubber Date & Time of Sampling:11.11.2022

at 04.38 PM

Reference No.& Date: 4700013395 ,Dtd: 02.08.2021

ANALYSIS RESULT

Α.	General information about stack :			
1.	Stack connected to : SSP Fluoride Scrubber			
2.	Emission due to : SSP Fluoride Scrubber			
3.	Material of construction of Stack : MS			
4.	Shape of Stack : Circular	60		
5.	Whether stack is provided with permanent platform & ladder:	Yes		
6.	capacity :	Working Loa	ad- 20 TPH	
B.	Physical characteristics of stack :			
1.	Height of the stack from ground level : 40 m			
2.	Diameter of the stack at sampling point : 1.5 m			
3.	Height of the Sampling Point from Ground level : 25.0 m	Way.	VG.	
4.	Area of Stack : 1.766 m ²	The same of the sa	The second second	
C.	Analysis/Characteristic of stack:			
1.	Fuel used :	2. Fuel Consumpt	ion :	
D.	Result of sampling & analysis of gaseous emission	Result	Method	
1.	Temperature of emmission (°C)	67		
2.	Barometric pressure (mm of Hg)	755	IS 11255 (Part III),2008RA 2018	
3.	Velocity of gas (m/s)	2.94	IS 11255 (Part III),2008RA 2018	
4.	Quantity of gas flow (Nm3/hr)	15077	IS 11255 (Part III),2008RA 2018	
5.	Concentration of Carbonmonoxide (% v/v)	<0.2	IS 13270:1992, Rffm 2009	
6.	Concentration of Oxygen (% v/v)	18.6	IS:13270 :1992 Reaff,2014	
7.	Concentration of Carbondioxide (% v/v)	1.0	IS:13270 :1992 Reaff,2014	
8.	Concentration of Particulate Matters (mg/Nm3)	26.7	IS 11255 (Part I):1985,RA 2014	
9.	Moisture content (%)	7.35	IS 11255 (Part III),2008RA 2018	
10.	Concentration of Gaseous Fluoride (mg/Nm3)	1.17	USEPA-13B - 20/08/1996	
E.	Pollution control device			
1. F.	Details of pollution control devices attached with the stack Remarks: Nil	: 4 Stage Fluorio	de Scrubber	

Report Prepared By

for Mitra S. Rrivate Limited

Authorised Signatory

• The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

ANALYTICAL CONSULTING & TECHNICAL CHEMISTS

(AN ISO 9001:2015 & ISO 45001: 2018 CERTIFIED COMPANY)

TAHER MANSION, 1ST FLOOR

9. BENTINCK STREET, KOLKATA - 700 001

Phone: (033) 4044-3380/3381/3382 / 3383, Fax: 33 2248-0447 E-mail: rvbriggs.kolkata@gmail.com, Website: www.rvbriggs.com

CIN: U51109WB1931PTC007007

TEST REPORT

Page 1 of 2 Date: November 05, 2022 No. AP-FG/22-23/816 : M/S. INDORAMA INDIA PRIVATE LIMITED Issued to : P.O.: Durgachak, Haldia, Dist: Purba Mednipour, Pin: 721602 Address Parameters Tested : 4700017754, dtd. 27.10.2022 Your Ref. P.O. No. Physical: Temp., Velocity, Gas flow : Stack Gas Sample Description Chemical: CO, CO2, F & PM : 28.10.2022 at 03:40 P.M. to 04:28 P.M. Date & time of sampling : 05.11.2022

General information about stack:

Test Completed on

: SSP Scrubber Stack connected to 1. : Process Activity Emission due to 2.

Material of construction of stack : M.S. 3. : Circular. Shape of stack 4.

Whether stack is provided with permanent platform & ladder: Yes. 5.

Physical characteristics of stack: B.

(a) from ground level: 40.0 M Height of the stack 1.

(b) from roof level: ---

2. Load: 25 PTH

Diameter of the stack 2.

(a) at bottom : --- (b) at top : ---

Diameter of the stack at sampling point 3.

: 1.5 M

No. of Traverse point 4. Height of the sampling point from GL

5.

: 20 Nos. : 25.0 M

Analysis / Characteristic of stack: C.

Fuel used : ---1.

D. Results of Physical Parameters of Flue Gas :		Barometric pressure: 755 mmHg		
SI No	Test Parameters	Test Method	Unit	Results
-	Temperature of emission	IS 11255 (Part 3): 2008	°C	68
	Velocity of gas in duct	IS 11255: (Part 3): 2008	m/sec	2.82
	Quantity of gas flow	IS 11255 : (Part 3) : 2008	NM ³ /hr	14115
٥.	Qualitity of gas now	265 E 72 - 27 - 31 - 31 - 31 - 31 - 31 - 31 - 31 - 3		

Results of gaseous emission:

Sl No	Test Parameters	Test Method	Unit	Results	Norms as per CPCB
1	Carbon monoxide	IS 13270 (By Orsat): 1992	% v/v	<0.2	Not Available
2.	Carbon dioxide	IS 13270 (By Orsat): 1992	% v/v	0.2	Not Available
3.	Particulate Matters	IS 11255 : (Part 1) : 1985	mg/Nm ³	68	150 max.
4.	Gasous Fluoride	IS 11255 (Part 5): 1990	mg/Nm ³	1.02	Not Available

Pollution control device

Details of pollution control devices attached with the stack : 4 Stage Water Scrubber.

5. Monde Report Verified by

-: END OF TEST REPORT :-

(Dr. R. KARIM) Technical Manager **Authorised Signatory** For R.V.BRIGGS & CO. (P) LTD.

S. Mondal

[★] The test report shall not be reproduced, except in full, without written approval of the Company.

^{*} Results relate only to the parameters tested.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE, LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -4699 Date: 30.03.2023

Sample Description: Stack Monitoring

Sample Mark: SAP-1

Date & Time of Sampling: 11.03.2023

at 10.00 AM

Reference No.& Date: 4700017438 ,Dtd: 13.09.2022

ANALYSIS RESULT

Α.	General information about stack :			
1.	Stack connected to	: SAP-1		
2.	Emission due to	:Process tai	l gas	
3.	Material of construction of Stack	: MS	de.	
4.	Shape of Stack	: Circular	The state of the s	
5.	Whether stack is provided with permanent platfor	rm & ladder : Y	Yes	
6.	capacity	:	Working Load- 18	TPH
В.	Physical characteristics of stack :		HILLY CONTRACTOR OF THE PARTY O	
1.	Height of the stack from ground level	: 40.0 m		
2.	Diameter of the stack at sampling point	: 0.95 m		NY
3.	Height of the Sampling Point from Ground level	: 21.0 m	N.	
4.	Area of Stack	: 0.71 m ²		
C.	Analysis/Characteristic of stack:	7-18-3		A T
1.	Fuel used :		2. Fuel Consumpt	ion :
D.	Result of sampling & analysis of gaseous	emission	Result	Method
1.	Temperature of emission (°C)		37	IS 11255 (Part III),2008RA 2018
2.	Barometric pressure (mm of Hg)	A. TO	756	Lab Method
3.	Velocity of gas (m/sec.)	76 3 76	11.75	IS 11255 (Part III),2008RA 2018
4.	Quantity of Gas Flow (Nm³/hr)		27942.06	IS 11255 (Part III),2008RA 2018
5.	Concentration of Sulphur Dioxide (mg/Nm³)		162.0	IS 11255 (Part II)-1985, RA:2014
6.	Acid Mist (mg/Nm³)		46.0	IS 11255 (Part 6) -1999; Rffm: 2003
E.	Pollution control device	Table Town		
1.	Details of pollution control devices attached	with the stack	: Continuous Alk	aline Scrubber
F.	Remarks : Nil	139		

Report Prepared like A

for Milira S. K. Pitivate Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -4432 Date: 09.03.2023

Sample Description: Stack Monitoring

Sample Mark: SAP-1

Date & Time of Sampling:23.02.2023

at 02.45 PM

Reference No.& Date: 4700017438 ,Dtd: 13.09.2022

ANALYSIS RESULT

Α.	General information about stack :				
1.	Stack connected to : SAP-1				
2.	Emission due to :Process tail gas				
3.	Material of construction of Stack : MS				
4.	Shape of Stack : Circular				
5.	Whether stack is provided with permanent platform & ladder:	Yes			
6 .	capacity :	Working Load- 14	4 TPH		
	Physical characteristics of stack :				
1.	Height of the stack from ground level : 40.0 m				
2.	Diameter of the stack at sampling point : 0.95 m				
3.	Height of the Sampling Point from Ground level : 21.0 m				
4.	Area of Stack : 0.71 m ²				
C.	Analysis/Characteristic of stack:				
1.	Fuel used :	2. Fuel Consumpt	tion:		
D.	Result of sampling & analysis of gaseous emission	Result	Method		
1.	Temperature of emission (°C)	38	IS 11255 (Part III),2008RA 2018		
2.	Barometric pressure (mm of Hg)	755	Lab Method		
3.	Velocity of gas (m/sec.)	11.81	IS 11255 (Part III),2008RA 2018		
4.	Quantity of Gas Flow (Nm³/hr)	27878.31	IS 11255 (Part III),2008RA 2018		
5.	Concentration of Sulphur Dioxide (mg/Nm³)	140.0	IS 11255 (Part II)-1985, RA:2014		
6.	Acid Mist (mg/Nm³)	45.0	IS 11255 (Part 6) -1999; Rffm: 2003		
E.	Pollution control device				
1.	Details of pollution control devices attached with the stack	k : Continuous Alk	caline Scrubber		
F.	Remarks : Nil				

Report Prepared By

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE, LIMITED.'

Haldia, Pin-721602

Report No. : WB/ED -4356 Date : 28.02.2023

Sample No.: MSKGL/ED/2022-23/01/01418 Sample Description: Stack Monitoring

Sample Mark: SAP-1

Date & Time of Sampling :30.01.2023

at 04.11 PM

Reference No.& Date: 4700013395 , Dtd: 02.08.2021

ANALYSIS RESULT

A.	General information about stack :				
1.	Stack connected to : SAP-1				
2.	Emission due to :Process tail gas				
3.	Material of construction of Stack : MS				
4.	Shape of Stack : Circular				
5.	Whether stack is provided with permanent platform & ladder:	Yes			
1.	capacity	Working Load- 1	0 TPH		
B.	Physical characteristics of stack :	9	× 22 22 20 20 20 20 20 20 20 20 20 20 20		
1.	Height of the stack from ground level : 40.0 m				
2.	Diameter of the stack at sampling point : 0.95 m				
3.	Height of the Sampling Point from Ground level : 21.0 m				
4.	Area of Stack : 0.71 m ²				
C.	Analysis/Characteristic of stack:		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
1.	Fuel used :	2. Fuel Consump	otion :		
D.	Result of sampling & analysis of gaseous emission	Result	Method		
1.	Temperature of emission (°C)	44	IS 11255 (Part III),2008RA 2018		
2.	Barometric pressure (mm of Hg)	756	Lab Method		
3.	Velocity of gas (m/sec.)	9.23	IS 11255 (Part III),2008RA 2018		
4.	Quantity of Gas Flow (Nm³/hr)	21554	IS 11255 (Part III),2008RA 2018		
5.	Concentration of Carbonmonoxide(% v/v)	<0.2	IS 13270 : 1992		
6.	Concentration of Carbondioxide (% v/v)	1.2	IS 13270 : 1992		
7.	Concentration of Sulphur Dioxide (mg/Nm³)	271.8	IS 11255 (Part II)-1985, RA:2014		
8.	Concentration of Particulate Matters (mg/Nm³)	32.3	IS: 11255 (Part I): 1985		
79.	Moisture content (%)	<2.0	IS: 11255 (Part 3): 2008		
10.	Acid Mist as H ₂ SO ₄ (mg/Nm ³)	34.7	IS 11255 (Part 6) -1999; Rffm: 2003		
E.	Pollution control device				
1.	Details of pollution control devices attached with the stack	: Continuous Al	kaline Scrubber		
F.	Remarks : Nil				

Report Prepared By

for Mitra S. K. Private Limited

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -3648 Date: 13.01.2023

Sample Description: Stack Monitoring

Sample Mark: SAP-1

Date & Time of Sampling: 19.12.2022

at 10.00 AM

Reference No.& Date: 4700017438 ,Dtd: 13.09.2022

ANALYSIS RESULT

Α.	General information about stack :		
1.	Stack connected to : SAP-1		
2.	Emission due to :Process ta	il gas	
3.	Material of construction of Stack : MS		
4 .	Shape of Stack : Circular	No.	
5.	Whether stack is provided with permanent platform & ladder:	Yes	
6.	capacity :	Working Load- 18	8 TPH
В.	Physical characteristics of stack :		
1.	Height of the stack from ground level : 40.0 m		
2.	Diameter of the stack at sampling point : 0.95 m		
3.	Height of the Sampling Point from Ground level : 21.0 m		
4.	Area of Stack : 0.71 m ²		
C.	Analysis/Characteristic of stack:		
1.	Fuel used :	2. Fuel Consumpt	tion:
D.	Result of sampling & analysis of gaseous emission	Result	Method
1.	Temperature of emission (°C)	37	IS 11255 (Part III),2008RA 2018
2.	Barometric pressure (mm of Hg)	756	Lab Method
3.	Velocity of gas (m/sec.)	11.37	IS 11255 (Part III),2008RA 2018
4.	Quantity of Gas Flow (Nm³/hr)	26966.96	IS 11255 (Part III),2008RA 2018
5.	Concentration of Sulphur Dioxide (mg/Nm³)	176	IS 11255 (Part II)-1985, RA:2014
6.	Ammonia (mg/Nm³)	45.0	IS 11255 (Part 6) -1999; Rffm: 2003
E.	Pollution control device		
1.	Details of pollution control devices attached with the stack	: Continuous Alk	caline Scrubber
F.	Remarks : Nil		

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -3289 Date: 06.12.2022

Sample Description: Stack Monitoring

Sample Mark: SAP-1

Date & Time of Sampling: 26.11.2022

Reference No.& Date: 4700017438 ,Dtd: 13.09.2022

ANALYSIS RESULT

A .	General information about stack :		
1.	Stack connected to : SAP-1	- 18	
2.	Emission due to :Process tai	il gas	The state of the s
3.	Material of construction of Stack : MS		
4.	Shape of Stack : Circular		
5.	Whether stack is provided with permanent platform & ladder:	Yes	
6.	capacity :	Working Load- 1	8 TPH
В.	Physical characteristics of stack :	19	
1.	Height of the stack from ground level : 40.0 m		
2.	Diameter of the stack at sampling point : 0.95 m		
3.	Height of the Sampling Point from Ground level : 21.0 m	Ye.	
4.	Area of Stack : 0.71 m ²		
C.	Analysis/Characteristic of stack:		
1.	Fuel used :	2. Fuel Consump	tion :
D.	Result of sampling & analysis of gaseous emission	Result	Method
1.	Temperature of emission (°C)	36	IS 11255 (Part III),2008RA 2018
2.	Barometric pressure (mm of Hg)	756	Lab Method
3.	Velocity of gas (m/sec.)	11.62	IS 11255 (Part III),2008RA 2018
4.	Quantity of Gas Flow (Nm³/hr)	27657.15	IS 11255 (Part III),2008RA 2018
5.	Concentration of Sulphur Dioxide (mg/Nm³)	176.0	IS 11255 (Part II)-1985, RA:2014
6.	Ammonia (mg/Nm³)	45.0	IS 11255 (Part 6) -1999; Rffm: 2003
E.	Pollution control device		
1.	Details of pollution control devices attached with the stack	: Continuous Alk	caline Scrubber
F.	Remarks : Nil		

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -2982 Date: 04.11.2022

Sample Description: Stack Monitoring

Sample Mark: SAP-1

Date & Time of Sampling: 19.10.2022

at 10.00 AM

Reference No.& Date: 4700017438 ,Dtd: 13.09.2022

ANALYSIS RESULT

Α.	General information about stack :					
1.	Stack connected to : SAP-1					
2 .	Emission due to :Process ta	il gas				
3.	Material of construction of Stack : MS					
4.	Shape of Stack : Circular					
5.	Whether stack is provided with permanent platform & ladder:	Yes				
6.	capacity :	Working Load- 18	3 TPH			
В.	Physical characteristics of stack :					
1.	Height of the stack from ground level : 40.0 m					
2.	Diameter of the stack at sampling point : 0.95 m	id.				
3.	Height of the Sampling Point from Ground level : 21.0 m	-				
4.	Area of Stack : 0.71 m ²					
C.	Analysis/Characteristic of stack: Fuel used :	2. Fuel Consumpt	tion :			
D.	Result of sampling & analysis of gaseous emission	Result	Method			
1.	Temperature of emission (°C)	38	IS 11255 (Part III),2008RA 2018			
2.	Barometric pressure (mm of Hg)	756	Lab Method			
3.	Velocity of gas (m/sec.)	12.28	IS 11255 (Part III),2008RA 2018			
4.	Quantity of Gas Flow (Nm³/hr)	29031.61	IS 11255 (Part III),2008RA 2018			
5.	Concentration of Sulphur Dioxide (mg/Nm³)	174	IS 11255 (Part II)-1985, RA:2014			
6.	Ammonia (mg/Nm³)	48	IS 11255 (Part 6) -1999; Rffm: 2003			
E. 1. F.	Pollution control device Details of pollution control devices attached with the stack Remarks: Nil	k : Continuous Alk				

Report Prepared By

for Mitra S. K. Private Limited

thorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

ANALYTICAL CONSULTING & TECHNICAL CHEMISTS

(AN ISO 9001:2015 & ISO 45001: 2018 CERTIFIED COMPANY)

TAHER MANSION, 1ST FLOOR

9. BENTINCK STREET, KOLKATA - 700 001

Phone: (033) 4044-3380/3381/3382 / 3383, Fax: 33 2248-0447 E-mail: rvbriggs.kolkata@gmail.com, Website: www.rvbriggs.com

CIN: U51109WB1931PTC007007

No. AP-FG/22-23/1342	Date: February 20, 202	23 Page 1 of 1
Issued to	: M/S. INDORAMA INDIA PRIVATE LIMITED	
Address : P.O.: Durgachak, Haldia, Dist: Purba Mednipour, Pin: 721602		Mednipour, Pin: 721602
Your Ref. P.O. No.	: 4700017754, dtd. 27.10.2022	Parameters Tested
Sample Description	: Stack Gas	Physical: Temp., Velocity, Gas flow
Date & time of sampling	: 18.02.2023 at 12:30 P.M. to 01:12 P.M.	Chemical: CO. CO2. SO2. PM & Acid Mist

General information about stack:

1. Stack connected to : SAP-2

Emission due to : Process of Tail Gas

: 20.02.2023

3. Material of construction of stack : M.S. 4. Shape of stack : Circular.

Whether stack is provided with permanent platform & ladder: Yes.

B. Physical characteristics of stack:

Height of the stack 1. (a) from ground level: 40.0 M

(b) from roof level: ---

Diameter of the stack 2.

Test Completed on

(a) at bottom

(b) at top : ---

3. Diameter of the stack at sampling point

: 1.2 M

No. of Traverse point

: 12 Nos.

Analysis / Characteristic of stack:

Fuel used : Tail Gas

D. Results of Physical Parameters of Flue Gas :		Barometric pressure: 757 mmHg		
Sl No	Test Parameters Test Meth		Unit	Results
1.	Temperature of emission	IS 11255 (Part 3): 2008	°C	40
2.	Velocity of gas in duct	IS 11255: (Part 3): 2008	m/sec	5.36
3.	Quantity of gas flow	IS 11255: (Part 3): 2008	NM ³ /hr	19935

Results of gaseous emission:

L. Results of guseous chilosion .				
Sl No	Test Parameters	Test Method	Unit	Results
1.	Sulphur dioxide	IS 11255 : Part 2 : 1985	mg/Nm ³	136
2.	Carbon monoxide	IS 13270 (By Orsat): 1992	% v/v	<0.2
3.	Carbon dioxide	IS 13270 (By Orsat): 1992	% v/v	0.2
4.	Particulate Matters	IS 11255 : (Part 1) : 1985	mg/Nm3	12
5.	Acid Mist	SOP No.: RVB/SOP/01/20 Issue No. 04, Issue Date: 10.01.2018: 2018	mg/Nm ³	24

-: END OF TEST REPORT :-

Pollution control device

Details of pollution control devices attached with the stack: Continuous Alkaline scrubber.

Report Verified by

S. Mondal

Technical Manager **Authorised Signatory** For R.V.BRIGGS & CO. (P) LTD.

Results relate only to the parameters tested.

[★] The test report shall not be reproduced, except in full, without written approval of the Company.

ANALYTICAL CONSULTING & TECHNICAL CHEMISTS

(AN ISO 9001:2015 & ISO 45001: 2018 CERTIFIED COMPANY)

TAHER MANSION, 1ST FLOOR

9. BENTINCK STREET, KOLKATA - 700 001

Phone: (033) 4044-3380/3381/3382 / 3383, Fax: 33 2248-0447 E-mail: rvbriggs.kolkata@gmail.com, Website: www.rvbriggs.com

CIN: U51109WB1931PTC007007

TEST REPORT

No. AP-FG/22-23/989 Date: December 16, 2022 Page 1 of 1

Issued to : M/S. INDORAMA INDIA PRIVATE LIMITED

Address : P.O.: Durgachak, Haldia, Dist: Purba Mednipour, Pin: 721602

Sample Description : Stack Gas | Physical : Temp., Velocity, Gas flow

Date & time of sampling : 15.12.2022 at 04:15 P.M. to 04:57 P.M. | Chemical: CO, CO₂, SO₂, PM & Acid Mist

Test Completed on : 16.12.2022

A. General information about stack :

1. Stack connected to : SAP-2

2. Emission due to : Process of Tail Gas

Material of construction of stack
 Shape of stack
 Circular.

5. Whether stack is provided with permanent platform & ladder: Yes.

B. Physical characteristics of stack:

1. Height of the stack (a) from ground level: 40.0 M

(b) from roof level: ---

2. Diameter of the stack

(a) at bottom : ---

(b) at top : ---

3. Diameter of the stack at sampling point

: 1.2 M

4. No. of Traverse point

: 12 Nos.

C. Analysis / Characteristic of stack :

1. Fuel used : Tail Gas

 D. Results of Physical Parameter 		rs of Flue Gas :	Barometric pressure: 759 mmHg		
SI No	Test Parameters	Test Method	Unit	Results	
1.	Temperature of emission	IS 11255 (Part 3): 2008	°C	38	
2.	Velocity of gas in duct	IS 11255: (Part 3): 2008	m/sec	5.40	
3.	Quantity of gas flow	IS 11255: (Part 3): 2008	NM³/hr	20304	

F Results of gaseous emission:

E.	E. Results of gaseous emission.				
Sl No	Test Parameters	Test Method	Unit	Results	
1.	Sulphur dioxide	IS 11255 : Part 2 : 1985	mg/Nm ³	145	
2.	Carbon monoxide	IS 13270 (By Orsat): 1992	% v/v	< 0.2	
3.	Carbon dioxide	IS 13270 (By Orsat): 1992	% v/v	0.2	
4.	Particulate Matters	IS 11255 : (Part 1) : 1985	mg/Nm3	10	
5.	Acid Mist	SOP No.: RVB/SOP/01/20 Issue No. 04, Issue Date: 10.01.2018: 2018	mg/Nm³	19.6	

F. Pollution control device

Details of pollution control devices attached with the stack: Continious Alkaline scrubber.

-: END OF TEST REPORT :-

Report Verified by

S. Mondal

(Dr. R. KARIM)

Technical Manager Authorised Signatory

For R.V.BRIGGS & CO. (P) LTD.

★ Results relate only to the parameters tested.

[★] The test report shall not be reproduced, except in full, without written approval of the Company.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No.: WB/ED -3099 Date: 30.11.2022

Sample No.: MSKGL/ED/2022-23/11/00775
Sample Description: Stack Monitoring

Sample Mark: SAP-2

Date & Time of Sampling:11.11.2022

at 01.50 PM

Reference No.& Date: 4700013395 ,Dtd: 02.08.2021

ANALYSIS RESULT

A .	General information about stack :	V 10. 1			
1.	Stack connected to : SAP-2				
2.	Emission due to : Process Tail Gas				
3.	Material of construction of Stack : MS				
4.	Shape of Stack : Circular				
5.	Whether stack is provided with permanent platform & ladder: Y	Yes			
6.	capacity :	100			
В.	Physical characteristics of stack :	U TATE	The state of the s		
1.	Height of the stack from ground level : 40 m				
2.	Diameter of the stack at sampling point : 0.95 m				
3.	Height of the Sampling Point from Ground level : 21.0 m	NE.			
4.	Area of Stack : 0.7085 m ²	The same of the sa			
C.	Analysis/Characteristic of stack:				
1.	Fuel used :	2. Fuel Consumpt	ion :		
D.	Result of sampling & analysis of gaseous emission	Result	Method		
1.	Temperature of emission (°C)	32	IS 11255 (Part III),2008RA 2018		
2.	Barometric pressure (mm of Hg)	755	Lab Method		
3.	Velocity of gas (m/sec.)	5.78	IS 11255 (Part III),2008RA 2018		
4.	Quantity of Gas Flow (Nm³/hr)	22201	IS 11255 (Part III),2008RA 2018		
5.	Concentration of Carbonmonoxide (% v/v)	<0.2	IS 13270:1992, Rffm 2009		
6.	Concentration of Carbondioxide (% v/v)	1.2	IS:13270 :1992 Reaff,2014		
7.	Concentration of Sulphur dioxide (mg/Nm³)	232.5	IS 11255 (Part II)-1985, RA:2014		
8.	Concentration of Particulate Matters (mg/Nm³)	9.2	IS 11255 (Part I):1985,RA 2014		
9.	Moisture content (%)	2.7	IS 11255 (Part III),2008RA 2018		
10.	Acid Mist as H ₂ SO ₄ (mg/Nm ³)	31.0	USEPA Part 8 - 29/10/1996		
E. 1.	Pollution control device Details of pollution control devices attached with the stack	: Continuous Alk	saline Scrubber		
F.	Remarks : Nil				

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

ANALYTICAL CONSULTING & TECHNICAL CHEMISTS

(AN ISO 9001:2015 & ISO 45001: 2018 CERTIFIED COMPANY)

TAHER MANSION, 1ST FLOOR

9, BENTINCK STREET, KOLKATA - 700 001

Phone: (033) 4044-3380/3381/3382 / 3383, Fax: 33 2248-0447 E-mail: rvbriggs.kolkata@gmail.com, Website: www.rvbriggs.com

CIN: U51109WB1931PTC007007

TEST REPORT

No. AP-FG/22-23/815

Issued to

Image: November 05, 2022

Page 1 of 1

Issued to

Image: November 05, 2022

Issued to

Image: November 05, 2022

Ima

Sample Description : Stack Gas

Date & time of sampling : 29.10.2022 at 10:15 A.M. to 10:57 A.M.

Test Completed on : 05.11.2022

A. General information about stack :

1. Stack connected to : SAP-2

2. Emission due to : Process of Tail Gas

3. Material of construction of stack : M.S.4. Shape of stack : Circular.

5. Whether stack is provided with permanent platform & ladder: Yes.

B. Physical characteristics of stack:

1. Height of the stack (a) from ground level: 40.0 M

(b) from roof level: ---

Chemical: CO, CO2, SO2, PM & Acid Mist

2. Diameter of the stack

(a) at bottom : ---

(b) at top : ---

3. Diameter of the stack at sampling point : 1.2 M

4. No. of Traverse point : 12 Nos.

C. Analysis / Characteristic of stack:

1. Fuel used : Tail Gas

D. Results of Physical Parameters of Flue Gas :		rs of Flue Gas :	Barometric pressure: 755 mmHg		
SI No	Test Parameters	Test Method	Unit	Results	
1.	Temperature of emission	IS 11255 (Part 3): 2008	°C	37	
2.	Velocity of gas in duct	IS 11255: (Part 3): 2008	m/sec	5.43	
3.	Quantity of gas flow	IS 11255: (Part 3): 2008	NM³/hr	20473	

F Results of gaseous emission:

SI No	Test Parameters	Test Method	Unit	Results
1.	Sulphur dioxide	IS 11255 : Part 2 : 1985	mg/Nm³	86
2.	Carbon monoxide	IS 13270 (By Orsat): 1992	% v/v	< 0.2
3.	Carbon dioxide	IS 13270 (By Orsat): 1992	% v/v	0.2
4.	Particulate Matters	IS 11255 : (Part 1) : 1985	mg/Nm3	12
5.	Acid Mist	SOP No.: RVB/SOP/01/20 Issue No. 04, Issue Date: 10.01.2018: 2018	mg/Nm³	13

F. Pollution control device

Details of pollution control devices attached with the stack: Continious Alkaline scrubber.

5. Mondo

Report Verified by S. Mondal -: END OF TEST REPORT :-

(Dr. R. KARIM)

Technical Manager
Authorised Signatory
For R.V.BRIGGS & CO. (P) LTD.

BB

[★] The test report shall not be reproduced, except in full, without written approval of the Company.

Monitoring Reports

<u> Annexure-2</u>

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4706 **Date**: : 29.03.2023

Sample No.: MSKGL/ED/2022-23/03/01074

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

1000 MB 44 TOO 15 77.		Durgachak				
		06.03.2023 to 07.03.2023				
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m3	88.6	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	50.7	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO₂)in µg/m³	9.7	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO₂)in µg/m³	50.2	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	56.2	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	30.6		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	18.2		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.51	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	36.8	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4707 Date: : 29.03.2023

Sample No. :MSKGL/ED/2022-23/03/01075

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

		Near Main Gate (Inside Plant)			
			06.03.2023 to 07.03.2023		
SI	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE	
1.	Particulate Matter (<10um) in µg/m ³	97.4	100	IS 5182: Part 23:2006 (Reaff. 2012)	
2.	Particulate Matter (<2.5um)in µg/m³	57.1	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I	
3.	Sulphur Dioxide (SO₂)in µg/m³	36.1	80	IS 5182 : Part 2 :2001 (Reaff.2012)	
4.	Nitrogen Dioxide (NO₂)in µg/m³	54.3	80	IS 5182 : Part 6 :2006 (Reaff.2012)	
5.	Ammonia (NH3) in µg/m³	62.8	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)	
6.	SO3 + Acid Mist in µg/m ³	57.9		NIOSH 1977 (Method 187)	
7.	Fluoride (F) in µg/m ³	29.4	-	IS 5182 (Part 13)- 1991	
8	Carbon monoxide (as CO) in mg/m ³	0.72	2	IS 13270:1992, Rffm 2009	
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999	
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999	
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C	
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009	
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006	
_	Ozone (as O3) in µg/m³	29.3	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)	

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4708 **Date**: : 29.03.2023

Sample No.: MSKGL/ED/2022-23/03/01076

Sample Description : Ambient Air

Reference No. & Date: 4700016680

ANALYSIS RESULT

Location :		Priyambada				
Date	e of sampling :	07.03.2023 to 08.03.2023				
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m3	72.6	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	35.8	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	8.6	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	35.9	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	43.6	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	23.4		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	18.5	Name of Street, or other Designation of Street, or other Desig	IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.25	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	29.1	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4709 **Date**: : 29.03.2023

Sample No.: MSKGL/ED/2022-23/03/01077

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling :		07.03.2023 to 08.03.2023				
-	AND THE PROPERTY OF THE PROPER					
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m ³	89.2	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	43.5	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	12.5	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	39.2	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	72.8	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	39.2	****	NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	35.2		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.44	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in μg/m ³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	29.5	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4710 **Date**: : 29.03.2023

Sample No.: MSKGL/ED/2022-23/03/01078

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

		Priyambada 15.03.2023 to 16.03.2023				
1.	Particulate Matter (<10um) in µg/m ³	63.1	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	36.7	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	7.4	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	41.1	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	39.0	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	18.7		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	13.3		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.21	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in μg/m ³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	20.2	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4711 **Date**: : 29.03.2023

Sample No.: MSKGL/ED/2022-23/03/01079

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling :		15.03.2023 to 16.03.2023				
SI	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
_	Particulate Matter (<10um) in µg/m³	90.6	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	44.9	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	40.8	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	46.7	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in µg/m ³	67.2	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	61.5		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	24.6		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.58	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m ³	35.2	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra \$. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008

Page 1 of 1

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4712 **Date**: : 29.03.2023

Sample No. :MSKGL/ED/2022-23/03/01080

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Location :		Durgachak				
Dat	e of sampling :	16.03.2023 to 17.03.2023				
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m ³	95.3	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	52.0	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO₂)in µg/m³	8.4	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	40.9	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	50.9	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	21.8		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	23.4		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.60	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
-	Ozone (as O3) in µg/m³	25.9	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4713 **Date**: : 29.03.2023

Sample No.: MSKGL/ED/2022-23/03/01081

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling :		16.03.2023 to 17.03.2023				
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m3	81.9	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	47.2	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	10.4	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	42.9	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m³	65.4	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	28.5		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	42.7	-	IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.37	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	33.7	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4562 **Date**: : 17.03.2023

Sample No.: MSKGL/ED/2022-23/02/01289

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Loc	ation :	Durgachak				
		06.02.2023 to 07.02.2023				
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m3	91.7	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	44.2	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	10.5	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	51.7	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in µg/m³	25.9	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	32.4		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	15.7	-	IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.58	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	34.2	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4563 **Date**: : 17.03.2023

Sample No.: MSKGL/ED/2022-23/02/01290

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Location :		Near Main Gate					
Dat	e of sampling :	06.02.2023 to 07.02.2023					
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE			
1.	Particulate Matter (<10um) in µg/m3	98.9	100	IS 5182: Part 23:2006 (Reaff. 2012)			
2.	Particulate Matter (<2.5um)in µg/m³	57.1	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I			
3.	Sulphur Dioxide (SO ₂)in µg/m ³	32.7	80	IS 5182 : Part 2 :2001 (Reaff.2012)			
4.	Nitrogen Dioxide (NO ₂)in μg/m ³	58.6	80	IS 5182 : Part 6 :2006 (Reaff.2012)			
5.	Ammonia (NH3) in μg/m ³	36.1	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)			
6.	SO3 + Acid Mist in µg/m ³	52.6		NIOSH 1977 (Method 187)			
7.	Fluoride (F) in µg/m ³	26.2		IS 5182 (Part 13)- 1991			
8	Carbon monoxide (as CO) in mg/m ³	0.84	2	IS 13270:1992, Rffm 2009			
9	Lead (as Pb) in µg/m³	0.03	1	EPA-IO3.2 -June,1999			
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999			
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C			
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009			
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006			
14	Ozone (as O3) in µg/m³	27.9	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)			

Report Prepared By

for Mitra S. K. Private Limited

Authorised \$ignatory

The results relate only to the item(s) tested.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4564 **Date**: : 17.03.2023

Sample No.: MSKGL/ED/2022-23/02/01291

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

	ation :	Priyambada 07.02.2023 to 08.02.2023				
Date	e of sampling :					
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m3	79.4	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³		60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	9.4	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	40.9	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	35.9	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	15.2		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	19.9		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.49	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m ³	24.0	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4565 **Date**: : 17.03.2023

Sample No.: MSKGL/ED/2022-23/02/01292

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling :		07.02.2023 to 08.02.2023				
SI	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
No	Parameters	RESULT	TIMIT I	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m ³	84.7	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	47.2	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	12.0	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO₂)in µg/m³	41.0	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	52.7	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	36.1		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	31.2		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.51	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
-	Ozone (as O3) in µg/m³	33.9	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4566 **Date**: : 17.03.2023

Sample No.: MSKGL/ED/2022-23/02/01293

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

		Priyambada 17.02.2023 to 18.02.2023				
SI	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
No						
1.	Particulate Matter (<10um) in µg/m3	68.2	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	31.9	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	8.0	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	44.8	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in µg/m³	30.8	400	Method of Air sampling, 3rd Edn. By James F Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	19.3		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	12.0		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.43	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m ³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	38.0	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4567 **Date**: : 17.03.2023

Sample No.: MSKGL/ED/2022-23/02/01294

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Dat	e of sampling :	17.02.2023 to 18.02.2023				
SI	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m ³	95.6	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	54.8	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	44	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	50.2	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	27.4	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	59.4	-	NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	28.7		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.72	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	0.02	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	31.1	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4568 **Date**: : 17.03.2023

Sample No.: MSKGL/ED/2022-23/02/01295

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

10000000	ation :	Durgachak 18.02.2023 to 19.02.2023					
(and the same	e of sampling :						
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE			
1.	Particulate Matter (<10um) in µg/m ³	82.8	100	IS 5182: Part 23:2006 (Reaff. 2012)			
2.	Particulate Matter (<2.5um)in µg/m³	45.6	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I			
3.	Sulphur Dioxide (SO₂)in µg/m³	9.6	80	IS 5182 : Part 2 :2001 (Reaff.2012)			
4.	Nitrogen Dioxide (NO₂)in µg/m³	42.3	80	IS 5182 : Part 6 :2006 (Reaff.2012)			
5.	Ammonia (NH3) in µg/m³	32.4	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)			
6.	SO3 + Acid Mist in µg/m ³	25.3		NIOSH 1977 (Method 187)			
7.	Fluoride (F) in µg/m ³	21.2	-	IS 5182 (Part 13)- 1991			
8	Carbon monoxide (as CO) in mg/m ³	0.63	2	IS 13270:1992, Rffm 2009			
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999			
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999			
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C			
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009			
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006			
14	Ozone (as O3) in µg/m³	22.8	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)			

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4569 **Date**: : 17.03.2023

Sample No.: MSKGL/ED/2022-23/02/01296

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling :		18.02.2023 to 19.02.2023				
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m3	92.4	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m ³	51.3	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	9.9	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO₂)in µg/m³	46.2	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	48.1	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	27.5		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	39.5	-	IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.37	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in μg/m ³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	29.2	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4146 **Date**: : 24.02.2023

Sample No.: MSKGL/ED/2022-23/02/00947

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

-2 tourists		Durgachak 04.01.2023 to 05.01.2023				
1.	Particulate Matter (<10um) in µg/m ³	82.7	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	42.8	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	8.6	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO₂)in µg/m³	55.2	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	63.5	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	20.1		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	18.6		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.78	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	0.02	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	28.5	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4147 **Date**: : 24.02.2023

Sample No.: MSKGL/ED/2022-23/02/00948

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

		Near Main Gate 04.01.2023 to 05.01.2023					
1.	Particulate Matter (<10um) in µg/m ³	98.6	100	IS 5182: Part 23:2006 (Reaff. 2012)			
2.	Particulate Matter (<2.5um)in µg/m³	52.3	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I			
3.	Sulphur Dioxide (SO ₂)in µg/m ³	36.5	80	IS 5182 : Part 2 :2001 (Reaff.2012)			
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	57.6	80	IS 5182 : Part 6 :2006 (Reaff.2012)			
5.	Ammonia (NH3) in μg/m ³	68.7	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)			
6.	SO3 + Acid Mist in µg/m ³	51.3		NIOSH 1977 (Method 187)			
7.	Fluoride (F) in µg/m ³	27.5	-	IS 5182 (Part 13)- 1991			
8	Carbon monoxide (as CO) in mg/m ³	0.89	2	IS 13270:1992, Rffm 2009			
9	Lead (as Pb) in µg/m³	0.03	1	EPA-IO3.2 -June,1999			
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999			
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C			
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009			
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006			
14	Ozone (as O3) in µg/m³	32.6	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)			

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4148 **Date**: : 24.02.2023

Sample No.: MSKGL/ED/2022-23/02/00949

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling : 0		Priyambada					
		05.01.2023 to 06.01.2023					
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE			
1.	Particulate Matter (<10um) in µg/m ³	78.6	100	IS 5182: Part 23:2006 (Reaff. 2012)			
2.	Particulate Matter (<2.5um)in µg/m³		60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I			
3.	Sulphur Dioxide (SO ₂)in µg/m ³	7.2	80	IS 5182 : Part 2 :2001 (Reaff.2012)			
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	35.6	80	IS 5182 : Part 6 :2006 (Reaff.2012)			
5.	Ammonia (NH3) in μg/m³	47.3	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)			
6.	SO3 + Acid Mist in µg/m ³	20.9		NIOSH 1977 (Method 187)			
7.	Fluoride (F) in µg/m ³	14.6	Marin	IS 5182 (Part 13)- 1991			
8	Carbon monoxide (as CO) in mg/m ³	25.3	2	IS 13270:1992, Rffm 2009			
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999			
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999			
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C			
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009			
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006			
14	Ozone (as O3) in µg/m³	25.3	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)			

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4149 **Date**: : 24.02.2023

Sample No.: MSKGL/ED/2022-23/02/00950

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Loc	ation :	Ammonium Terminal Station-1				
Date of sampling :		05.01.2023 to 06.01.2023				
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m3	87.3	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m ³	44.7	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	18.6	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	43.2	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in µg/m³	78.6	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	36.2		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	23.2		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.65	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
	Ozone (as O3) in µg/m³	30.7	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4150 **Date**: : 24.02.2023

Sample No.: MSKGL/ED/2022-23/02/00951

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling : :		Durgachak 30.01.2023 to 31.01.2023				
1.	Particulate Matter (<10um) in µg/m ³	76.8	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	36.5	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	7.8	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	49.7	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	51.2	400	Method of Air sampling, 3rd Edn. By James F Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	17.7		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	21.5	. dem	IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.67	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in μg/m ³	0.02	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	33.7	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4151 **Date**: : 24.02.2023

Sample No. :MSKGL/ED/2022-23/02/00952

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

		Near Main Gate					
		30.01.2023 to 31.01.2023					
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE			
1.	Particulate Matter (<10um) in µg/m ³	89.8	100	IS 5182: Part 23:2006 (Reaff. 2012)			
2.	Particulate Matter (<2.5um)in µg/m³	48.5	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I			
3.	Sulphur Dioxide (SO ₂)in µg/m ³	28.7	80	IS 5182 : Part 2 :2001 (Reaff.2012)			
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	47.8	80	IS 5182 : Part 6 :2006 (Reaff.2012)			
5.	Ammonia (NH3) in µg/m³	51.4	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)			
6.	SO3 + Acid Mist in µg/m ³	40.6	****	NIOSH 1977 (Method 187)			
7.	Fluoride (F) in µg/m ³	31.4		IS 5182 (Part 13)- 1991			
8	Carbon monoxide (as CO) in mg/m ³	0.78	2	IS 13270:1992, Rffm 2009			
9	Lead (as Pb) in µg/m³	0.03	1	EPA-IO3.2 -June,1999			
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999			
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C			
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009			
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006			
14	Ozone (as O3) in µg/m³	27.6	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)			

Report Prepared By

for Mitra S. K. Private Limited

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4152 **Date**: : 24.02.2023

Sample No.: MSKGL/ED/2022-23/02/00953

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling :		Priyambada 31.01.2023 to 01.02.2023				
1.	Particulate Matter (<10um) in µg/m ³	69.9	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	33.5	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	6.8	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	40.2	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	38.7	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	17.4	-	NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	11.7		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.21	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	21.8	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-4153 **Date**: : 24.02.2023

Sample No.: MSKGL/ED/2022-23/02/00954

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling :		31.01.2023 to 01.02.2023					
SI	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE			
	Particulate Matter (<10um) in µg/m ³	91.8	100	IS 5182: Part 23:2006 (Reaff. 2012)			
2.	Particulate Matter (<2.5um)in µg/m³		60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I			
3.	Sulphur Dioxide (SO ₂)in µg/m ³	22.6	80	IS 5182 : Part 2 :2001 (Reaff.2012)			
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	51.7	80	IS 5182 : Part 6 :2006 (Reaff.2012)			
5.	Ammonia (NH3) in μg/m ³	67.5	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)			
6.	SO3 + Acid Mist in µg/m ³	25.2	-	NIOSH 1977 (Method 187)			
7.	Fluoride (F) in µg/m ³	32.7		IS 5182 (Part 13)- 1991			
8	Carbon monoxide (as CO) in mg/m ³	0.53	2	IS 13270:1992, Rffm 2009			
9	Lead (as Pb) in µg/m ³	<0.01	1	EPA-IO3.2 -June,1999			
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999			
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C			
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009			
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006			
-	Ozone (as O3) in µg/m³	26.5	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)			

Report Prepared By

for Witra S. K. Private Limited

Authorised Signatory

• The results relate only to the item(s) tested.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3876 **Date**: : 31.01.2023

Sample No.: MSKGL/ED/2022-23/12/01948

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Location :		Near Main Gate					
Date of sampling :		06.12.2022 to 07.12.2022					
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE			
1.	Particulate Matter (<10um) in µg/m3	94.3	100	IS 5182: Part 23:2006 (Reaff. 2012)			
2.	Particulate Matter (<2.5um)in µg/m ³	54.3	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I			
3.	Sulphur Dioxide (SO ₂)in µg/m ³	40.9	80	IS 5182 : Part 2 :2001 (Reaff.2012)			
	Nitrogen Dioxide (NO ₂)in µg/m ³	52.5	80	IS 5182 : Part 6 :2006 (Reaff.2012)			
5.	Ammonia (NH3) in μg/m ³	36.3	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)			
6.	SO3 + Acid Mist in µg/m ³	57.2	2	NIOSH 1977 (Method 187)			
7.	Fluoride (F) in µg/m ³	28.6		IS 5182 (Part 13)- 1991			
8	Carbon monoxide (as CO) in mg/m ³	0.59	2	IS 13270:1992, Rffm 2009			
9	Lead (as Pb) in µg/m ³	<0.01	1	EPA-IO3.2 -June,1999			
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999			
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C			
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009			
13	Benzene (C ₆ H ₆)in μg/m ³	<4.2	5	IS:5182(Part-11):2006			
	Ozone (as O3) in µg/m ³	26.2	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)			

Report Prepared By

for Mitra S. K. Private Limited

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3877 Date: : 31.01.2023

Sample No.: MSKGL/ED/2022-23/12/01949

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

		Priyambada 06.12.2022 to 07.12.2022				
The Control	Particulate Matter (<10um) in µg/m ³	76.9	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	32.6	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	9.6	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	30.6	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in µg/m ³	27.2	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	18.6		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	15.4		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.38	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m ³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m ³	36.1	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited
Lay
Authorised Signatory

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016, West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Page 1 of 1

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3878 **Date**: : 31.01.2023

Sample No.: MSKGL/ED/2022-23/12/01950

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

		Ammonium Terminal Station -1 07.12.2022 to 08.12.2022				
Dat	e of sampling :	07.12.2022	to 08.12.202			
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m3	88.3	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m ³	50.2	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	8.4	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	45.9	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	57.1	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	24.3	1	NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	22.3		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.47	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	24.8	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3879 **Date**: : 31.01.2023

Sample No.: MSKGL/ED/2022-23/12/01951

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling :		Durgachak					
		07.12.2022 to 08.12.2022					
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE			
1.	Particulate Matter (<10um) in µg/m ³	90.7	100	IS 5182: Part 23:2006 (Reaff. 2012)			
2.	Particulate Matter (<2.5um)in µg/m ³	42.1	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I			
3,	Sulphur Dioxide (SO ₂)in µg/m ³	10.3	80	IS 5182 : Part 2 :2001 (Reaff.2012)			
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	50.0	80	IS 5182 : Part 6 :2006 (Reaff.2012)			
5.	Ammonia (NH3) in µg/m ³	40.8	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)			
6.	SO3 + Acid Mist in µg/m ³	26.5		NIOSH 1977 (Method 187)			
7.	Fluoride (F) in µg/m ³	16.1		IS 5182 (Part 13)- 1991			
8	Carbon monoxide (as CO) in mg/m ³	0.62	2	IS 13270:1992, Rffm 2009			
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999			
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999			
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C			
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009			
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006			
14	Ozone (as O3) in µg/m³	31.9	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)			

Report Prepared By

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED' Haldia - 721602, **Report No.** :WB/ED-3880 **Date**: : 31.01.2023

RIVATE LIMITED' Date: : 31.01.2023
Sample No. :MSKGL/ED/2022-23/12/01952

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

		Priyambada 28.12.2022 to 29.12.2022				
1.	Particulate Matter (<10um) in µg/m ³	68.5	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m ³	44.1	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	8.9	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	39.5	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	19.1	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	20.1		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	12.6	4	IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.43	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	30.6	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3881 Date: : 31.01.2023

Sample No.: MSKGL/ED/2022-23/12/01953

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Loc	ation :	Durgachak		
Dat	e of sampling :	28.12.2022	to 29.12.202	2
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE
1.	Particulate Matter (<10um) in µg/m ³	84.0	100	IS 5182: Part 23:2006 (Reaff. 2012)
2.	Particulate Matter (<2.5um)in µg/m ³	48.0	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I
3.	Sulphur Dioxide (SO ₂)in µg/m ³	9.1	80	IS 5182 : Part 2 :2001 (Reaff.2012)
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	57.3	80	IS 5182 : Part 6 :2006 (Reaff.2012)
5.	Ammonia (NH3) in μg/m ³	33.2	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)
6.	SO3 + Acid Mist in µg/m ³	15.7		NIOSH 1977 (Method 187)
7.	Fluoride (F) in µg/m ³	19.5		IS 5182 (Part 13)- 1991
8	Carbon monoxide (as CO) in mg/m ³	0.55	2	IS 13270:1992, Rffm 2009
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006
14	Ozone (as O3) in µg/m³	<20.0	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3882 : 31.01.2023

Sample No.: MSKGL/ED/2022-23/12/01954

Sample Description: Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Location :		Near Main G	Sate		
Date of sampling ;		29.12.2022 to 30.12.2022			
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE	
1.	Particulate Matter (<10um) in µg/m ³	87.6	100	IS 5182: Part 23:2006 (Reaff. 2012)	
2.	Particulate Matter (<2.5um)in µg/m ³	50.2	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I	
3.	Sulphur Dioxide (SO ₂)in µg/m ³	51.8	80	IS 5182 : Part 2 :2001 (Reaff,2012)	
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	58.6	80	IS 5182 : Part 6 :2006 (Reaff,2012)	
5.	Ammonia (NH3) in μg/m ³	43.9	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)	
6.	SO3 + Acid Mist in µg/m ³	54.9		NIOSH 1977 (Method 187)	
7.	Fluoride (F) in µg/m ³	36.9		IS 5182 (Part 13)- 1991	
8	Carbon monoxide (as CO) in mg/m ³	0.68	2	IS 13270:1992, Rffm 2009	
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999	
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999	
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C	
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009	
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006	
14	Ozone (as O3) in µg/m ³	33.9	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)	

Report Prepared By

for Mitra S. K. Private Limited Authorised Signatory

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No.: WB/ED-3883 : 31.01.2023

Sample No.: MSKGL/ED/2022-23/12/01955

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Dat	e of sampling ;		Terminal Sta				
		29.12.2022 to 30.12.2022					
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE			
1.	Particulate Matter (<10um) in µg/m ³	80.8	100	IS 5182: Part 23:2006 (Reaff. 2012)			
2.	Particulate Matter (<2.5um)in μg/m ³	46.7	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I			
3.	Sulphur Dioxide (SO ₂)in µg/m ³	10.7	80	IS 5182 : Part 2 :2001 (Reaff.2012)			
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	41.3	80	IS 5182 : Part 6 :2006 (Reaff.2012)			
5.	Ammonia (NH3) in µg/m³	51.8	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)			
6.	SO3 + Acid Mist in µg/m ³	21.6		NIOSH 1977 (Method 187)			
7.	Fluoride (F) in µg/m ³	17.6	-	IS 5182 (Part 13)- 1991			
8	Carbon monoxide (as CO) in mg/m ³	0.40	2	IS 13270:1992, Rffm 2009			
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999			
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999			
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C			
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009			
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006			
14	Ozone (as O3) in µg/m ³	<20.0	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)			

Report Prepared By (A)

for Mitra S. K. Private Limited Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No.: WB/ED-3338 : 26.12.2022 Date:

Sample No.: MSKGL/ED/2022-23/12/00436

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Loc	ation :	Durgachak		
Date	e of sampling :	10.11.2022	to 11.11.202	22
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE
1.	Particulate Matter (<10um) in µg/m ³	85.8	100	IS 5182: Part 23:2006 (Reaff. 2012)
2.	Particulate Matter (<2.5um)in µg/m³	48.3	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I
3.	Sulphur Dioxide (SO ₂)in µg/m ³	12.8	80	IS 5182 : Part 2 :2001 (Reaff.2012)
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	51.0	80	IS 5182 : Part 6 :2006 (Reaff.2012)
5.	Ammonia (NH3) in µg/m³	35.1	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)
6.	SO3 + Acid Mist in µg/m ³	18.0		NIOSH 1977 (Method 187)
7.	Fluoride (F) in µg/m ³	16.3	Abot-	IS 5182 (Part 13)- 1991
8	Carbon monoxide (as CO) in mg/m ³	0.75	2	IS 13270:1992, Rffm 2009
9	Lead (as Pb) in µg/m³	0.02	1	EPA-IO3.2 -June,1999
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006
-	Ozone (as O3) in µg/m³	42.8	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)

Report Prepared By

for Mitra S. K. Private Limited

uthorised Signatory

The results relate only to the item(s) tested.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3339 **Date**: : 26.12.2022

Sample No.: MSKGL/ED/2022-23/12/00437

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling :		Priyambada 11.11.2022 to 12.11.2022				
1.	Particulate Matter (<10um) in µg/m3	80.7	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	42.9	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	8.7	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	35.3	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in µg/m³	19.7	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	22.1	-	NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	15.1	A A MARINE	IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.51	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m ³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	36.1	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No.: WB/ED-3340 : 26.12.2022 Date:

Sample No.: MSKGL/ED/2022-23/12/00438

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Location : // Date of sampling :		Ammonium Terminal Station-1 11.11.2022 to 12.11.2022				
SI	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
No		RESULT	CHAILI	METHOD OF TEST REPERENCE		
1.	Particulate Matter (<10um) in µg/m ³	81.6	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	50.2	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	8.0	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO₂)in µg/m³	47.3	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in µg/m³	51.6	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	34.2		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	24.2		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.53	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	30.5	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

Private Limited for Mitra

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3341 **Date**: : 26.12.2022

Sample No.: MSKGL/ED/2022-23/12/00439

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

		Priyambada 28.11.2022 to 29.11.2022				
1.	Particulate Matter (<10um) in µg/m3	68.5	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	35.2	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	7.9	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO₂)in µg/m³	30.0	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m ³	26.2	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	14.7		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	13.9	-	IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.34	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m ³	30.3	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No.: WB/ED-3343 Date: : 26.12.2022

Sample No.: MSKGL/ED/2022-23/12/00441

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

- Carlo Carl		Durgachak 29.11.2022 to 30.11.2022				
1.	Particulate Matter (<10um) in µg/m ³	94.1	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	42.5	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	9.6	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	42.8	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in µg/m³	28.3	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	26.1	-	NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	20.0		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.63	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m ³	0.04	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	36.4	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3344 **Date**: : 26.12.2022

Sample No. :MSKGL/ED/2022-23/12/00442

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Date of sampling : 2		Ammonium Terminal Station-1 29.11.2022 to 30.11.2022				
1.	Particulate Matter (<10um) in µg/m ³	89.8	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	51.7	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO ₂)in µg/m ³	6.5	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	37.2	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in μg/m³	42.8	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	22.8		NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	19.5	-	IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	0.29	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	0.02	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	25.7	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

for Mitra Si Rrivate Limited

Authorised Signatory

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3242 **Date**: : 30.11.2022

Sample No.: MSKGL/ED/2022-23/11/00001

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Loc	ation :	Priyambada		
Dat	e of sampling :	10.10.2022	to 11.10.202	2
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE
1.	Particulate Matter (<10um) in µg/m3	71.9	100	IS 5182: Part 23:2006 (Reaff. 2012)
2.	Particulate Matter (<2.5um)in µg/m³	34.3	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I
3.	Sulphur Dioxide (SO₂)in µg/m³	7.7	80	IS 5182 : Part 2 :2001 (Reaff.2012)
4.	Nitrogen Dioxide (NO₂)in µg/m³	35.7	80	IS 5182 : Part 6 :2006 (Reaff.2012)
5.	Ammonia (NH3) in µg/m³	30.7	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)
6.	SO3 + Acid Mist in µg/m ³	29.2		NIOSH 1977 (Method 187)
7.	Fluoride (F) in µg/m ³	15.9		IS 5182 (Part 13)- 1991
8	Carbon monoxide (as CO) in mg/m ³	0.51	2	IS 13270:1992, Rffm 2009
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006
	Ozone (as O3) in µg/m³	37.6	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)

Report Prepared By

for Mitra & K. Private Limited

Authorised Signatory

• The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3243 **Date**: : 30.11.2022

Sample No.: MSKGL/ED/2022-23/11/00002

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Loc	ation :	Durgachak		
Date	e of sampling :	10.10.2022	to 11.10.202	22
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE
1.	Particulate Matter (<10um) in µg/m3	85.9	100	IS 5182: Part 23:2006 (Reaff. 2012)
2.	Particulate Matter (<2.5um)in µg/m³	40.9	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I
3.	Sulphur Dioxide (SO ₂)in µg/m ³	6.8	80	IS 5182 : Part 2 :2001 (Reaff.2012)
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	45.0	80	IS 5182 : Part 6 :2006 (Reaff.2012)
5.	Ammonia (NH3) in µg/m³	21.8	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)
6.	SO3 + Acid Mist in µg/m ³	21.9		NIOSH 1977 (Method 187)
7.	Fluoride (F) in µg/m ³	13.7		IS 5182 (Part 13)- 1991
8	Carbon monoxide (as CO) in mg/m ³	0.89	2	IS 13270:1992, Rffm 2009
9	Lead (as Pb) in µg/m³	0.02	1	EPA-IO3.2 -June,1999
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C
12	Benzo(a)Pyrene (BaP)in ng/m³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006
14	Ozone (as O3) in µg/m ³	31.7	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

• The results relate only to the item(s) tested.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3244 **Date**: : 30.11.2022

Sample No. :MSKGL/ED/2022-23/11/00003

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

	ation :	Near Main G		
Dat	e of sampling :	11.10.2022 1	to 12.10.202	2
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE
1.	Particulate Matter (<10um) in µg/m3	92.2	100	IS 5182: Part 23:2006 (Reaff. 2012)
2.	Particulate Matter (<2.5um)in µg/m³	53.8	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I
3.	Sulphur Dioxide (SO ₂)in µg/m ³	10.2	80	IS 5182 : Part 2 :2001 (Reaff.2012)
4.	Nitrogen Dioxide (NO₂)in µg/m³	37.1	80	IS 5182 : Part 6 :2006 (Reaff.2012)
5.	Ammonia (NH3) in μg/m ³	29.4	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)
6.	SO3 + Acid Mist in µg/m ³	40.3		NIOSH 1977 (Method 187)
7.	Fluoride (F) in µg/m ³	17.9	-	IS 5182 (Part 13)- 1991
8	Carbon monoxide (as CO) in mg/m ³	0.47	2	IS 13270:1992, Rffm 2009
9	Lead (as Pb) in µg/m³	0.03	1	EPA-IO3.2 -June,1999
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006
	Ozone (as O3) in µg/m³	36.4	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)

Report Prepared By

for Mitra S. R. Private Limited

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3245 **Date**: : 30.11.2022

Sample No.: MSKGL/ED/2022-23/11/00004

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

200	ation :	Ammonium		
Date	e of sampling :	11.10.2022	22	
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE
1.	Particulate Matter (<10um) in µg/m ³	86.3	100	IS 5182: Part 23:2006 (Reaff. 2012)
2.	Particulate Matter (<2.5um)in µg/m³	48.2	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I
3.	Sulphur Dioxide (SO₂)in µg/m³	9.8	80	IS 5182 : Part 2 :2001 (Reaff.2012)
4.	Nitrogen Dioxide (NO₂)in µg/m³	32.4	80	IS 5182 : Part 6 :2006 (Reaff.2012)
5.	Ammonia (NH3) in μg/m ³	45.7	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)
6.	SO3 + Acid Mist in µg/m ³	35.5		NIOSH 1977 (Method 187)
7.	Fluoride (F) in µg/m ³	22.4		IS 5182 (Part 13)- 1991
8	Carbon monoxide (as CO) in mg/m ³	0.72	2	IS 13270:1992, Rffm 2009
9	Lead (as Pb) in µg/m³	0.02	1	EPA-IO3.2 -June,1999
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006
_	Ozone (as O3) in µg/m³	29.0	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3246 **Date**: : 30.11.2022

Sample No.: MSKGL/ED/2022-23/11/00005

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Loc	ation :	Priyambada		
Date	e of sampling :	26.10.2022 1	0 27.10.202	2
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE
1.	Particulate Matter (<10um) in µg/m3	79.5	100	IS 5182: Part 23:2006 (Reaff. 2012)
2.	Particulate Matter (<2.5um)in µg/m³	42.8	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I
3.	Sulphur Dioxide (SO ₂)in µg/m ³	7.2	80	IS 5182 : Part 2 :2001 (Reaff.2012)
	Nitrogen Dioxide (NO ₂)in µg/m ³	42.1	80	IS 5182 : Part 6 :2006 (Reaff.2012)
5.	Ammonia (NH3) in μg/m ³	22.0	400	Method of Air sampling, 3rd Edn. By James F Lodge (Method-401)
6.	SO3 + Acid Mist in µg/m ³	24.4		NIOSH 1977 (Method 187)
7.	Fluoride (F) in µg/m ³	22.9		IS 5182 (Part 13)- 1991
8	Carbon monoxide (as CO) in mg/m ³	0.33	2	IS 13270:1992, Rffm 2009
9	Lead (as Pb) in µg/m³	0.02	1	EPA-IO3.2 -June,1999
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006
	Ozone (as O3) in µg/m³	32.5	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

• The results relate only to the item(s) tested.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3247 **Date**: : 30.11.2022

Sample No.: MSKGL/ED/2022-23/11/00006

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Loc	ation :	Near Main G	ate	
Date	e of sampling :	26.10.2022 1	to 27.10.202	2
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE
1.	Particulate Matter (<10um) in µg/m3	81.7	100	IS 5182: Part 23:2006 (Reaff. 2012)
2.	Particulate Matter (<2.5um)in µg/m³	44.7	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I
3.	Sulphur Dioxide (SO₂)in µg/m³	8.9	80	IS 5182 : Part 2 :2001 (Reaff.2012)
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	29.5	80	IS 5182 : Part 6 :2006 (Reaff.2012)
5.	Ammonia (NH3) in µg/m³	36.2	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)
6.	SO3 + Acid Mist in µg/m ³	31.1		NIOSH 1977 (Method 187)
7.	Fluoride (F) in µg/m ³	21.7		IS 5182 (Part 13)- 1991
8	Carbon monoxide (as CO) in mg/m ³	0.59	2	IS 13270:1992, Rffm 2009
9	Lead (as Pb) in µg/m³	<0.01	1	EPA-IO3.2 -June,1999
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006
14	Ozone (as O3) in µg/m³	22.0	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)

Report Prepared By

for Mitra S.K. Private Limited

Authorised Signatory

• The results relate only to the item(s) tested.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3248 Date: : 30.11.2022

Sample No.: MSKGL/ED/2022-23/11/00007

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

Loc	ation :	Durgachak				
Date	e of sampling :	27.10.2022 1	to 28.10.202	2		
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE		
1.	Particulate Matter (<10um) in µg/m3	97.3	100	IS 5182: Part 23:2006 (Reaff. 2012)		
2.	Particulate Matter (<2.5um)in µg/m³	51.3	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I		
3.	Sulphur Dioxide (SO₂)in µg/m³	8.5	80	IS 5182 : Part 2 :2001 (Reaff.2012)		
4.	Nitrogen Dioxide (NO ₂)in µg/m ³	55.8	80	IS 5182 : Part 6 :2006 (Reaff.2012)		
5.	Ammonia (NH3) in µg/m³	35.4	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)		
6.	SO3 + Acid Mist in µg/m ³	35.7	-	NIOSH 1977 (Method 187)		
7.	Fluoride (F) in µg/m ³	26.4		IS 5182 (Part 13)- 1991		
8	Carbon monoxide (as CO) in mg/m ³	1.29	2	IS 13270:1992, Rffm 2009		
9	Lead (as Pb) in µg/m³	0.03	1	EPA-IO3.2 -June,1999		
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June,1999		
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C		
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009		
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006		
14	Ozone (as O3) in µg/m³	24.9	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)		

Report Prepared By

Private Limited Authorised Signatory

The results relate only to the item(s) tested.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE LIMITED'

Haldia - 721602,

Report No. :WB/ED-3249 **Date**: : 30.11.2022

Sample No.: MSKGL/ED/2022-23/11/00008

Sample Description : Ambient Air

Reference No.& Date: 4700016680

ANALYSIS RESULT

	ation :	Ammonium '		
	e of sampling :	27.10.2022	to 28.10.202	2
SI No	Parameters	RESULT	LIMIT	METHOD OF TEST REFERENCE
1.	Particulate Matter (<10um) in µg/m ³	96.1	100	IS 5182: Part 23:2006 (Reaff. 2012)
2.	Particulate Matter (<2.5um)in µg/m³	54.1	60	Lab Sop No. TPM/MSK/E/5/C Based on USEPA CFR 40, part 50 Appendix L, 2006/CPCB Vol. I
3.	Sulphur Dioxide (SO₂)in µg/m³	11.6	80	IS 5182 : Part 2 :2001 (Reaff.2012)
4.	Nitrogen Dioxide (NO₂)in µg/m³	41.5	80	IS 5182 : Part 6 :2006 (Reaff.2012)
5.	Ammonia (NH3) in μg/m ³	53.4	400	Method of Air sampling, 3rd Edn. By James P Lodge (Method-401)
6.	SO3 + Acid Mist in µg/m ³	49.3		NIOSH 1977 (Method 187)
7.	Fluoride (F) in µg/m ³	15.9		IS 5182 (Part 13)- 1991
8	Carbon monoxide (as CO) in mg/m ³	0.91	2	IS 13270:1992, Rffm 2009
9	Lead (as Pb) in µg/m³	0.04	1	EPA-IO3.2 -June,1999
10	Nickel (as Ni) in ng/m ³	<5.0	20	EPA-IO3.2 -June, 1999
11	Arsenic (as As) in ng/m ³	<1.0	6	APHA 22 nd Edtn 2012,3114 C
12	Benzo(a)Pyrene (BaP)in ng/m ³	<0.5	1	IS:5182(Part-12):2004 Reaff,: 2009
13	Benzene (C ₆ H ₆)in µg/m ³	<4.2	5	IS:5182(Part-11):2006
14	Ozone (as O3) in µg/m³	36.4	100	Method of Air Samping 3 rd Edn By James P Lodge (Method 411)

Report Prepared By

for Mitra S.K. Private Limited

Authorised Signatory

[•] The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Monitoring Reports

Annexure-3

Name & Address of the Customer : Indorama India Private Limited

Durgachak, Haldia, Dist. - Purba Medinipur,

Pin-721602

Report No.: WB/ED-4561 **Date** : 17.03.2023

Sample No. :MSKGL/ED/2022-23/03/00523-26

Sample Description: Noise

Ref. No. & Date: 4700013546, dtd:20.08.2021

ANALYSIS RESULT

Location	Near DAP Gate	Near DG Room	Near Main Gate	Near Parking Area
Monitoring Date	11.03.2023 to 12.03.2023	11.03.2023 to 12.03.2023	13.03.2023 to 14.03.2023	13.03.2023 to 14.03.2023
Time (In Hrs.)		Hourly Leq dB		14.03.2023
06.00-07.00	59.1	55.1	56.1	53.7
07.00-08.00	61.2	55.3	56.4	CENTRAL MIL
08.00-09.00	62.7	55.0	57.9	54.1
09.00-10.00	63.8	54.2	58.2	55.1
10.00-11.00	65.1	56.7	58.5	55.9
11.00-12.00	63.4	56.7	57.0	54.3
12.00-13.00	61.8	56.1	56.4	54.8
13.00-14.00	61.3	55.3	56.2	54.2
14.00-15.00	61.2	53.6	55.4	53.6
15.00-16.00	58.3	53.3		53.3
16.00-17.00	59.2	52.0	54.8	53.1
17.00-18.00	59.2	51.6	The state of the s	51.4
18.00-19.00	57.8	51.5	53.8	50.2
19.00-20.00	55.8	50.2		48.8
20.00-21.00	58.0	49.7	52.0	48.1
21.00-22.00	57.2	50.1	51.5	47.8
22.00-23.00	56.3	49.2	50.6	47.5
23.00-00.00	53.9	48.5	49.2	47.6
00.00-01.00	52.4	48.3	49.0	46.8
01.00-02.00	53.3	50.2	50.5	48.7
02.00-03.00	54.9	50.4	51.5	49.0
03.00-04.00	56.7	52.7	51.7	49.1
04.00-05.00	57.4	54.0	52.2	50.2
05.00-06.00	58.7	54.3	53.5	51.2
Results in Leq dB(A) Day	59.3	53.7	55.8 55.1	52.7 52. 6
Results in Leq dB(A) Night Time	57.0	50.3	51.4	48.5

		Noise Limit as per CPC	СВ
Caqtegory of Area/Zone	Leq dB(A) Day Time	Leq dB(A) Night Time	
Industrial	75	70	NOTE:
Commercial	65	55	Day Time: 06.00 Hr22.00 Hr.
Residential	55	45	Night Time:22.00 Hr06.00 Hr.
Silence	50	40	

Report Prepared By

for Mitra S. K. Private Limited

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : Indorama India Private Limited

Durgachak, Haldia, Dist. - Purba Medinipur,

Pin-721602

Report No. :WB/ED-3904

Date : 31.01.2023

Sample No.: MSKGL/ED/2022-23/03/00519-522

Sample Description: Noise

Ref. No. & Date: 4700013546, dtd:20.08.2021

ANALYSIS RESULT

Location	Near DG Room	Near Main Gate	Near Parking Gate	Near DAP Gate
Monitoring Date	26.12.2022 to 27.12.2022	26.12.2022 to 27.12.2022	27.12.2022 to 28.12.2022	27.12.2022 to 28.12.2022
Time (In Hrs.)		Hourly Leg dB	B(A)	2011#12022
06.00-07.00	55.2	56.1	48.8	63.3
07.00-08.00	55.9	57.0	50.9	65.2
08.00-09.00	56.5	58.5	52.5	65.1
09.00-10.00	57.4	59.4	53.5	66.6
10.00-11.00	56.8	60.2	54.6	67.6
11.00-12.00	57.5	61.2	56.2	67.7
12.00-13.00	57.9	62.2	56.7	67.3
13.00-14.00	58.1	61.0	55.9	65.2
14.00-15.00	56.4	61.2	54.8	63.6
15.00-16.00	55.8	59.5	53.1	63.1
16.00-17.00	55.0	58.7	53.4	62.3
17.00-18.00	54.2	57.8	53.5	61.0
18.00-19.00	52.3	56.7	51.9	61.0
19.00-20.00	52.0	55.8	52.4	60.3
20.00-21.00	52.5	54.7	51.3	59.5
21.00-22.00	49.0	54.8	50.7	59.5
22.00-23.00	49.3	53.5	48.2	59.9
23.00-00.00	48.9	53.2	47.7	59.2
00.00-01.00	47.9	51.0	46.4	58.6
01.00-02.00	50.7	51.9	49.0	59.6
02.00-03.00	51.4	53.0	48.9	58.8
03.00-04.00	51.8	53.9	47.8	60.0
04.00-05.00	53.4	54.8	49.1	
05.00-06.00	54.1	55.4	50.4	61.0
Results in Leq dB(A) Day Time	54.7	57.2	51.5	63.3
Results in Leq dB(A) Night Time	51.5	55.5	51.0	60.3

		Noise Limit as per CPC	CB
Caqtegory of Area/Zone	Leq dB(A) Day Time	Leq dB(A) Night Time	
Industrial	75	70	NOTE:
Commercial	65	55	Day Time: 06.00 Hr22.00 Hr.
Residential	55	45	Night Time:22.00 Hr06.00 Hr.
Silence	50	40	

Report Prepared By

for Mitra S. K. Private Limited

Authorised Signatory

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Monitoring Reports

<u> Annexure-4</u>

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. :WB/ED-0166 **Date**: :27.04.2023

Sample No.: MSKGL/ED/2022-23/03/01725 Sample Description: Effluent Water

Sampling Location: ETP Treated Water from Plant Outlet

Sample Drawn on: 30.03.2023

Reference No.& Date: 4700017438

ANALYSIS RESULT

SI No.	Test Parameters	Unit	Result	Method
1.	pH value at 25° C		7.46	APHA (23rd Edition) 4500 -H-B : 2017
2.	Fluoride (as F)	mg/l	0.51	APHA (23rd Edition) 4500 -F- C/D: 2017
3.	Total Suspended Solid (as TSS)	mg/l	12	APHA (23rd Edition) 2540D : 2017
4.	Biochemical Oxygen Demand (as BOD)	mg/l	9.6	APHA (23rd Edition) 5210B : 2017
5.	Chemical Oxygen Demand (COD)	mg/l	37	APHA (23rd Edition) 5220B : 2017
6.	Oil and Grease	mg/l	<5.0	APHA (23rd Edition) 5520B : 2017
7.	Ammoniacal Nitrogen (as N)	mg/l	<0.1	APHA (23rd Edition) 4500 - NH3-F : 2017
8.	Dissolved Phosphate (as P)	mg/l	0.07	APHA (23rd Edition) 4500 PB, D: 2017
9.	Total Kjeldahl Nitrogen as N	mg/l	<0.3	APHA (23rd Edition) 2017 4500 -Norg B: 2017
10.	Free Ammoniacal Nitrogen as N	mg/l	<0.1	APHA (23rd Edition) 4500-NH3-F 2017 (O)

Report Prepared By

for Mitra S. R. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. :WB/ED-4705 **Date**: :30.03.2023

Sample No. : MSKGL/ED/2022-23/02/01236

Sample Description : Effluent Water
Sampling Location: ETP Treated Water
from Plant Outlet

Sample Drawn on: 17.02.2023

Reference No.& Date: 4700017438

ANALYSIS RESULT

SI No.	Test Parameters	Unit	Result	Method
1.	pH value at 25° C		7.52	APHA (23rd Edition) 4500 -H-B : 2017
2.	Fluoride (as F)	mg/l	0.52	APHA (23rd Edition) 4500 -F- C/D: 2017
3.	Total Suspended Solid	mg/l	<2.5	APHA (23rd Edition) 2540D : 2017
4.	Biochemical Oxygen Demand	mg/l	<2.0	APHA (23rd Edition) 5210B : 2017
5.	Chemical Oxygen Demand	mg/l	8	APHA (23rd Edition) 5220B : 2017
6.	Oil and Grease	mg/l	<5.0	APHA (23rd Edition) 5520B : 2017
7.	Ammoniacal Nitrogen (as N)	mg/l	<0.1	APHA (23rd Edition) 4500-NH3-F 2017_(O)
8.	Dissolved Phosphate (as P)	mg/l	0.22	APHA (23rd Edition) 4500 PB, D: 2017
9.	Total Kjeldahl Nitrogen as N	mg/l	<0.3	APHA (23rd Edition) 2017 4500 -Norg B: 2017
10.	Free Ammoniacal Nitrogen as N	mg/l	<0.1	APHA (23rd Edition) 4500-NH3-F 2017_(O)

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin- 721602

Report No. :WB/ED-4360 **Date**: :28.02.2023

Sample No.: MSKGL/ED/2022-23/02/00129
Sample Description: Effluent Water
Sampling Location: ETP Treated Water

from Plant Outlet

Sample Drawn on: 30.01.2023

Reference No.& Date: 4700017438

ANALYSIS RESULT

SI No.	Test Parameters	Unit	Result	Method
1.	pH value at 25.5° C		7.80	APHA (23rd Edition) 4500 -H-B : 2017
2.	Fluoride (as F)	mg/l	0.52	APHA (23rd Edition) 4500 -F- C/D: 2017
3.	Total Suspended Solid	mg/l	5.1	APHA (23rd Edition) 2540D : 2017
4.	Biochemical Oxygen Demand	mg/l	<2.0	APHA (23rd Edition) 5210B : 2017
5.	Chemical Oxygen Demand	mg/l	<4.0	APHA (23rd Edition) 5220B : 2017
6.	Oil and Grease	mg/l	<5.0	APHA (23rd Edition) 5520B : 2017
7.	Ammoniacal Nitrogen (as N)	mg/l	<0.1	APHA (23rd Edition) 4500-NH3-F 2017
8.	Dissolved Phosphate (as P)	mg/l	0.33	APHA (23rd Edition) 4500 P B, D : 2017
9.	Total Kjeldahl Nitrogen as N	mg/l	<0.3	APHA (23rd Edition) 2017 4500 -Norg B: 2017
10.	Free Ammoniacal Nitrogen as N	mg/l	<0.1	APHA (23rd Edition) 4500-NH3-F 2017

Report Prepared By

for Mitra S.K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. :WB/ED-3885 Date: :31.01.2023

Sample No.: MSKGL/ED/2022-23/01/00061 Sample Description: Effluent Water

Sampling Location: ETP Outlet Water

From Final Outside Drain

Sample Drawn on: 29.12.2022

Reference No.& Date: 4700017438

ANALYSIS RESULT

SI No.	Test Parameters	Unit	Result	Method
1.	pH value at 23° C		7.65	APHA (23rd Edition) 4500 -H-B : 2017
2.	Fluoride (as F)	mg/l	0.65	APHA (23rd Edition)4500 - F C/D, 2017 (O)
3.	Total Suspended Solid	mg/l	14	APHA (23rd Edition) 2540D : 2017
4.	Biochemical Oxygen Demand	mg/l	<2.0	APHA (23rd Edition) 5210B : 2017
5.	Chemical Oxygen Demand	mg/l	8	APHA (23rd Edition) 5220B : 2017
6.	Oil and Grease	mg/l	<5.0	APHA (23rd Edition) 5520B : 2017
7.	Ammoniacal Nitrogen (as N)	mg/l	<0.1	APHA (23rd Edition) 4500-NH3-F 2017
8.	Dissolved Phosphate (as P)	mg/l	0.21	APHA (23rd Edition) 4500- P B, D 2017 (O)
9.	Total Kjeldahl Nitrogen as N	mg/l	<0.3	APHA (23rd Edition) 2017 4500 -Norg B: 2017
10.	Free Ammoniacal Nitrogen as N	mg/l	<0.1	APHA (23rd Edition) 4500-NH3-F 2017

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. :WB/ED-3352 Date: :31.12.2022

Sample No.: MSKGL/ED/2022-23/11/00779

Sample Description : Effluent Water Sampling Location: ETP Outlet Water

From Final Outside Drain Sample Drawn on: 11.11.2022

Reference No.& Date: 4700017438

ANALYSIS RESULT

SI No.	Test Parameters	Unit	Result	Method
1.	pH value at 25°C		7.68	APHA (23rd Edition) 4500 -H-B : 2017
2.	Fluoride (as F)	mg/l	0.54	APHA (23rd Edition)4500 - F C/D, 2017_(O)
3.	Total Suspended Solid	mg/l	<2.5	APHA (23rd Edition) 2540D : 2017
4.	Biochemical Oxygen Demand	mg/l	<2.0	APHA (23rd Edition) 5210B : 2017
5.	Chemical Oxygen Demand	mg/l	8.0	APHA (23rd Edition) 5220B : 2017
6.	Oil and Grease	mg/l	<5.0	APHA (23rd Edition) 5520B : 2017
7.	Ammoniacal Nitrogen (as N)	mg/l	3.1	APHA (23rd Edition) 4500-NH3-F 2017 (O)
8.	Dissolved Phosphate (as P)	mg/l	< 0.05	APHA (23rd Edition) 4500- P B, D 2017 (O)
9.	Total Kjeldahl Nitrogen (as N)	mg/l	6.4	APHA (23rd Edition) 2017 4500 -Norg B: 2017
10.	Free Ammoniacal Nitrogen (as N)	mg/l	2.0	APHA (23rd Edition) 4500-NH3-F 2017 (O)

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. :WB/ED-3251 **Date**: :30.11.2022

Sample No.: MSKGL/ED/2022-23/11/00108 Sample Description: Effluent Water

Sampling Location: ETP Outlet Water From Final Outside Drain

Sample Drawn on: 31.10.2022

Reference No.& Date: 4700017438

ANALYSIS RESULT

SI No.	Test Parameters	Unit	Result	Method
1.	pH value at 25°C		7.85	APHA (23rd Edition) 4500 -H-B : 2017
2.	Fluoride (as F)	mg/l	<0.1	APHA (23rd Edition)4500 - F C/D, 2017_(O)
3.	Total Suspended Solid	mg/l	6.7	APHA (23rd Edition) 2540D : 2017
4.	Biochemical Oxygen Demand	mg/l	<2.0	APHA (23rd Edition) 5210B : 2017
5.	Chemical Oxygen Demand	mg/l	8.0	APHA (23rd Edition) 5220B : 2017
6.	Oil and Grease	mg/l	<5.0	APHA (23rd Edition) 5520B : 2017
7.	Ammoniacal Nitrogen (as N)	mg/l	0.30	APHA (23rd Edition) 4500-NH3-F 2017 (O)
8.	Dissolved Phosphate (as P)	mg/l	<0.05	APHA (23rd Edition) 4500- P B, D 2017_(O)
9.	Total Kjeldahl Nitrogen (as N)	mg/l	0.38	APHA (23rd Edition) 2017 4500 -Norg B: 2017
10.	Free Ammoniacal Nitrogen (as N)	mg/l	0.16	APHA (23rd Edition) 4500-NH3-F 2017 (O)

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. :WB/ED-4721 **Date**: :29.03.2023

Sample No.: MSKGL/ED/2022-23/03/00516

Sample Description : Ground Water Sampling Location: Deep Tube Well-1

Sample Drawn on: 13.03.2023

Reference No.& Date: 4700016682

ANALYSIS RESULT

SI No.	Test Parameters	Unit	Result	Method
1.	Colour	Hazen	<5.0	APHA (23rd Ediition) 2120B : 2017
2.	pH value at 31° C		7.20	APHA (23rd Edition) 4500 -H-B : 2017
3.	Turbidity	N.T.U.	8.0	APHA (23rd Edition) 2130B : 2017
4.	Total Dissolved Solids	mg/l	798	APHA (23rd Edition) 2540C : 2017
5.	Aluminium (as Al)	mg/l	< 0.01	APHA (23rd Edition)3120 B : 2017
6.	Barium (as Ba)	mg/l	< 0.05	APHA (23rd Edition)3120B 2017 (ICP OES)_(O
7.	Boron (as B)	mg/l	<0.5	APHA (23 rd Edition)2540C_(O)
8.	Calcium (as Ca)	mg/l	52	APHA (23rd Edition) 3500 Ca B,2017_(O)
9.	Chloride (as CI)	mg/l	263	APHA (23rd Edition) 4500 -CI B : 2017
10.	Copper (as Cu)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017
11.	Fluoride (as F)	mg/l	0.37	APHA (23rd Edition) 4500 -F- C/D: 2017
12.	Iron (as Fe)	mg/l	0.29	APHA (23rd Edition) 3500 Fe B : 2017
13.	Manganese (as Mn)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017
14.	Nitrate (as NO ₃)	mg/l	<0.5	APHA (23rd Edition) 4500 -NO3 E: 2017
15.	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	<0.001	APHA (23rd Edition) 5530C : 2017
16.	Selenium (as Se)	mg/l	< 0.005	APHA (23rd Edition) 3120 B : 2017
17.	Silver (as Ag)	mg/l	< 0.005	APHA (23rd Edition)3120B 2017 (O)
18	Sulphate (as SO ₄)	mg/l	<1.0	APHA (23rd Edition) 4500 -SO42- E : 2017
19	Total Hardness (as CaCO ₃)	mg/l	249	APHA (23rd Edition) , 2340 C : 2017
20	Cadmium (as Cd)	mg/l	< 0.001	APHA (23rd Edition)3120B 2017 (O)
21	Cyanide (as CN)	mg/l	<0.02	APHA (23rd Edition) 4500 -CN- F: 2017
22	Lead (as Pb)	mg/l	< 0.005	APHA (23rd Edition) 3120 B : 2017
23	Mercury (as Hg)	mg/l	< 0.001	IS 3025 (Part 48)
24	Nickel (as Ni)	mg/l	< 0.02	APHA (23rd Edition) 3120 B : 2017

Contd to Page-2

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Page-2

SI No.	Test Parameters	Unit	Result	Method
25	Arsenic(as As)	mg/l	<0.005	APHA (23rd Edition)3120B 2017 (ICP OES) (O)
26	Total Chromium (as Cr)	mg/l	<0.01	APHA (23rd Edition) 3120 B : 2017
27	Zinc (as Zn)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017
28	Sulphide (as H ₂ S)	mg/l	<0.01	APHA 23rd Edition, 4500 S2- D: 2017
29	Magnesium (as Mg ⁺²)	mg/l	28	APHA (23rd Edition) 3500 Mg B,2017 (O)
30	Total Alkalinity (as CaCO ₃)	mg/l	303	APHA 23rd Edtn-2017, 2320B (O)
31	E.coli	/100ml	Not detected	APHA 23rd Edition 9221 F (O)
32	Total coliform	MPN/100ml	6.8	APHA 23rd Edition 9221 B (O)

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. :WB/ED-4722 **Date**: :29.03.2023

Sample No.: MSKGL/ED/2022-23/03/00517 Sample Description: Ground Water Sampling Location: Deep Tube Well-2

Sample Drawn on: 13.03.2023

Reference No.& Date: 4700016682

ANALYSIS RESULT

SI No.	Test Parameters	Unit	Result	Method
1.	Colour	Hazen	<5.0	APHA (23rd Ediition) 2120B : 2017
2.	pH value at 30° C	1000 KIN AND AND	7.10	APHA (23rd Edition) 4500 -H-B : 2017
3.	Turbidity	N.T.U.	22	APHA (23rd Edition) 2130B : 2017
4.	Total Dissolved Solids	mg/l	1132	APHA (23rd Edition) 2540C : 2017
5.	Aluminium (as AI)	mg/l	< 0.01	APHA (23rd Edition)3120 B : 2017
6.	Barium (as Ba)	mg/l	< 0.05	APHA (23rd Edition)3120B 2017 (ICP OES) (O)
7.	Boron (as B)	mg/l	<0.5	APHA (23 rd Edition)2540C_(O)
8.	Calcium (as Ca)	mg/l	83	APHA (23rd Edition) 3500 Ca B,2017_(O)
9.	Chloride (as Cl)	mg/l	480	APHA (23rd Edition) 4500 -CI B : 2017
10.	Copper (as Cu)	mg/l	< 0.02	APHA (23rd Edition) 3120 B : 2017
11.	Fluoride (as F)	mg/l	0.42	APHA (23rd Edition) 4500 -F- C/D: 2017
12.	Iron (as Fe)	mg/l	0.94	APHA (23rd Edition) 3500 Fe B : 2017
13.	Manganese (as Mn)	mg/l	< 0.02	APHA (23rd Edition) 3120 B : 2017
14.	Nitrate (as NO ₃)	mg/l	<0.5	APHA (23rd Edition) 4500 -NO3 E: 2017
15.	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	<0.001	APHA (23rd Edition) 5530C : 2017
16.	Selenium (as Se)	mg/l	< 0.005	APHA (23rd Edition) 3120 B : 2017
17.	Silver (as Ag)	mg/l	< 0.005	APHA (23rd Edition)3120B 2017_(O)
18	Sulphate (as SO ₄)	mg/l	<1.0	APHA (23rd Edition) 4500 -SO42- E : 2017
19	Total Hardness (as CaCO ₃)	mg/l	367	APHA (23rd Edition) , 2340 C : 2017
20	Cadmium (as Cd)	mg/l	< 0.001	APHA (23rd Edition)3120B 2017_(O)
21	Cyanide (as CN)	mg/l	< 0.02	APHA (23rd Edition) 4500 -CN- F: 2017
22	Lead (as Pb)	mg/l	< 0.005	APHA (23rd Edition) 3120 B : 2017
23	Mercury (as Hg)	mg/l	<0.001	IS 3025 (Part 48)
24	Nickel (as Ni)	mg/l	< 0.02	APHA (23rd Edition) 3120 B : 2017

Contd to Page-2

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Page-2

SI No.	Test Parameters	Unit	Result	Method
25	Arsenic(as As)	mg/l	<0.005	APHA (23rd Edition)3120B 2017 (ICP OES) (O)
26	Total Chromium (as Cr)	mg/l	<0.01	APHA (23rd Edition) 3120 B : 2017
27	Zinc (as Zn)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017
28	Sulphide (as H ₂ S)	mg/l	<0.01	APHA 23rd Edition, 4500 S2- D: 2017
29	Magnesium (as Mg ⁺²)	mg/l	38	APHA (23rd Edition) 3500 Mg B,2017 (O)
30	Total Alkalinity (as CaCO ₃)	mg/l	327	APHA 23rd Edtn-2017, 2320B_(O)
31	E.coli	/100ml	Not detected	APHA 23rd Edition 9221 F (O)
32	Total coliform	MPN/100ml	11	APHA 23rd Edition 9221 B (O)

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer : 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. :WB/ED-4723 Date: :29.03.2023

Sample No.: MSKGL/ED/2022-23/03/00518

Sample Description : Ground Water Sampling Location: (Kumarchak Village)

Beside Plant

Sample Drawn on: 13.03.2023

Reference No.& Date: 4700016682

ANALYSIS RESULT

SI No.	Test Parameters	Unit	Result	Method
1.	Colour	Hazen	<5.0	APHA (23rd Ediition) 2120B : 2017
2.	pH value at 27° C		6.90	APHA (23rd Edition) 4500 -H-B : 2017
3.	Turbidity	N.T.U.	3.2	APHA (23rd Edition) 2130B : 2017
4.	Total Dissolved Solids	mg/l	1196	APHA (23rd Edition) 2540C : 2017
5.	Aluminium (as Al)	mg/l	< 0.01	APHA (23rd Edition)3120 B : 2017
6.	Barium (as Ba)	mg/l	< 0.05	APHA (23rd Edition)3120B 2017 (ICP OES)_(O
7.	Boron (as B)	mg/l	<0.5	APHA (23 rd Edition)2540C (O)
8.	Calcium (as Ca)	mg/l	51	APHA (23rd Edition) 3500 Ca B,2017 (O)
9.	Chloride (as CI)	mg/l	523	APHA (23rd Edition) 4500 -CI B : 2017
10.	Copper (as Cu)	mg/l	< 0.02	APHA (23rd Edition) 3120 B : 2017
11.	Fluoride (as F)	mg/l	0.34	APHA (23rd Edition) 4500 -F- C/D: 2017
12.	Iron (as Fe)	mg/l	0.08	APHA (23rd Edition) 3500 Fe B : 2017
13.	Manganese (as Mn)	mg/l	< 0.02	APHA (23rd Edition) 3120 B : 2017
14.	Nitrate (as NO ₃)	mg/l	1.3	APHA (23rd Edition) 4500 -NO3 E: 2017
15.	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	<0.001	APHA (23rd Edition) 5530C : 2017
16.	Selenium (as Se)	mg/l	< 0.005	APHA (23rd Edition) 3120 B : 2017
17.	Silver (as Ag)	mg/l	< 0.005	APHA (23rd Edition)3120B 2017 (O)
18	Sulphate (as SO ₄)	mg/l	89	APHA (23rd Edition) 4500 -SO42- E : 2017
19	Total Hardness (as CaCO ₃)	mg/l	326	APHA (23rd Edition) , 2340 C : 2017
20	Cadmium (as Cd)	mg/l	< 0.001	APHA (23rd Edition)3120B 2017_(O)
21	Cyanide (as CN)	mg/l	<0.02	APHA (23rd Edition) 4500 -CN- F: 2017
22	Lead (as Pb)	mg/l	< 0.005	APHA (23rd Edition) 3120 B : 2017
23	Mercury (as Hg)	mg/l	< 0.001	IS 3025 (Part 48)
24	Nickel (as Ni)	mg/l	< 0.02	APHA (23rd Edition) 3120 B : 2017

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Page-2

SI No.	Test Parameters	Unit	Result	Method
25	Arsenic(as As)	mg/l	<0.005	APHA (23rd Edition)3120B 2017 (ICP OES) (O)
26	Total Chromium (as Cr)	mg/l	<0.01	APHA (23rd Edition) 3120 B : 2017
27	Zinc (as Zn)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017
28	Sulphide (as H ₂ S)	mg/l	<0.01	APHA 23rd Edition, 4500 S2- D: 2017
29	Magnesium (as Mg ⁺²)	mg/l	48	APHA (23rd Edition) 3500 Mg B,2017 (O)
30	Total Alkalinity (as CaCO ₃)	mg/l	186	APHA 23rd Edtn-2017, 2320B_(O)
31	E.coli	/100ml	Not detected	APHA 23rd Edition 9221 F (O)
32	Total coliform	MPN/100ml	17	APHA 23rd Edition 9221 B (O)

Report Prepared By

for Mitra S. Rrivate Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. :WB/ED-3905 **Date**: :31.01.2023

Sample No.: MSKGL/ED/2022-23/12/01591 Sample Description: Ground Water Sampling Location: Deep Tube Well-1

Sample Drawn on: 27.12.2022

Reference No.& Date: 4700016682

ANALYSIS RESULT

1. Colour Hazen <5.0	SI No.	Test Parameters	Unit	Result	Method
2. pH value at 20° C	1.	Colour	Hazen	<5.0	
3. Turbidity N.T.U. 32 APHA (23rd Edition) 2130B : 2017 4. Total Dissolved Solids mg/l 888 APHA (23rd Edition) 2540C : 2017 5. Aluminium (as Al) mg/l <0.01 APHA (23rd Edition)3120 B : 2017 6. Barium (as Ba) mg/l <0.05 APHA (23rd Edition)3120B 2017 (ICP OES) (CO) 7. Boron (as B) mg/l <0.5 APHA (23rd Edition)2540C_(O) 8. Calcium (as Ca) mg/l 56 APHA (23rd Edition) 3500 Ca B,2017_(O) 9. Chloride (as Cl) mg/l 261 APHA (23rd Edition) 3500 Ca B,2017_(O) 10. Copper (as Cu) mg/l <0.02 APHA (23rd Edition) 3120 B : 2017 11. Fluoride (as F) mg/l 0.43 APHA (23rd Edition) 3100 B : 2017 12. Iron (as Fe) mg/l 2.6 APHA (23rd Edition) 3500 Fe B : 2017 13. Manganese (as Mn) mg/l <0.02 APHA (23rd Edition) 3500 Fe B : 2017 14. Nitrate (as NO ₃) mg/l <0.02 APHA (23rd Edition) 3120 B : 2017 15. Phenolic Compounds (as C ₆ H ₅ OH) mg/l <0.05 APHA (23rd Edition) 4500 -NO ₃ - E: 2017 16. Selenium (as Se) mg/l <0.005 APHA (23rd Edition) 3120 B : 2017 17. Silver (as Ag) mg/l <0.005 APHA (23rd Edition) 3120 B : 2017 18. Sulphate (as SO ₄) mg/l <0.005 APHA (23rd Edition) 3120 B : 2017 20. Cadmium (as Cd) mg/l <1.0 APHA (23rd Edition) 4500 -SO42- E : 2017 21. Cyanide (as CN) mg/l <0.001 APHA (23rd Edition) 3120 B 2017_(O) 22. Lead (as Pb) mg/l <0.002 APHA (23rd Edition) 3120 B : 2017 23. Mercury (as Hg) mg/l <0.005 APHA (23rd Edition) 3120 B : 2017	2.	pH value at 20° C		8.06	
4. Total Dissolved Solids mg/l 888 APHA (23rd Edition) 2540C : 2017 5. Aluminium (as Al) mg/l <0.01	3.	Turbidity	N.T.U.	32	
5. Aluminium (as AI) mg/l <0.01 APHA (23rd Edition)3120 B : 2017 6. Barium (as Ba) mg/l <0.05	4.	Total Dissolved Solids	mg/l	888	
7. Boron (as B) mg/l <0.5 APHA (23 rd Edition) 2540C_(O) 8. Calcium (as Ca) mg/l 56 APHA (23rd Edition) 3500 Ca B,2017_(O) 9. Chloride (as Cl) mg/l 261 APHA (23rd Edition) 4500 -Cl B: 2017 10. Copper (as Cu) mg/l <0.02	5.	Aluminium (as AI)	mg/l	<0.01	
7. Boron (as B) mg/l <0.5 APHA (23 rd Edition) 2540C_(O) 8. Calcium (as Ca) mg/l 56 APHA (23rd Edition) 3500 Ca B,2017_(O) 9. Chloride (as Cl) mg/l 261 APHA (23rd Edition) 4500 -Cl B : 2017 10. Copper (as Cu) mg/l <0.02	6.	Barium (as Ba)	mg/l	<0.05	
8. Calcium (as Ca) mg/l 56 APHA (23rd Edition) 3500 Ca B,2017_(O) 9. Chloride (as Cl) mg/l 261 APHA (23rd Edition) 4500 -Cl B : 2017 10. Copper (as Cu) mg/l <0.02	7.	Boron (as B)	mg/l	<0.5	
9. Chloride (as CI) mg/l 261 APHA (23rd Edition) 4500 -CI B : 2017 10. Copper (as Cu) mg/l <0.02	8.	Calcium (as Ca)	mg/l	56	
11. Fluoride (as F) mg/l 0.43 APHA (23rd Edition) 4500 - F C/D, 2017_(0) 12. Iron (as Fe) mg/l 2.6 APHA (23rd Edition) 3500 Fe B : 2017 13. Manganese (as Mn) mg/l <0.02	9.	Chloride (as CI)	mg/l	261	
12. Iron (as Fe) mg/l 2.6 APHA (23rd Edition) 3500 Fe B : 2017 13. Manganese (as Mn) mg/l <0.02	10.	Copper (as Cu)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017
12. Iron (as Fe) mg/l 2.6 APHA (23rd Edition) 3500 Fe B : 2017 13. Manganese (as Mn) mg/l <0.02	11.	Fluoride (as F)	mg/l	0.43	APHA (23rd Edition)4500 - F C/D, 2017 (O)
13. Manganese (as Mn) mg/l <0.02	12.	Iron (as Fe)	mg/l	2.6	
14. Nitrate (as NO₃) mg/l <0.5 APHA (23rd Edition) 4500 -NO₃- E: 2017 15. Phenolic Compounds (as C₀H₅OH) mg/l <0.001	13.	Manganese (as Mn)	mg/l	<0.02	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.	Nitrate (as NO ₃)	mg/l	<0.5	APHA (23rd Edition) 4500 -NO3- E: 2017
17. Silver (as Ag) mg/l <0.005 APHA (23rd Edition)3120B 2017_(O) 18. Sulphate (as SO ₄) mg/l <1.0	15.		mg/l	<0.001	
17. Silver (as Ag) mg/l <0.005 APHA (23rd Edition) 3120B 2017_(0) 18. Sulphate (as SO ₄) mg/l <1.0	16.	Selenium (as Se)	mg/l	<0.005	APHA (23rd Edition) 3120 B : 2017
19 Total Hardness (as CaCO3) mg/l 247 APHA (23rd Edition), 2340 C : 2017 20 Cadmium (as Cd) mg/l <0.001	17.	Silver (as Ag)	mg/l	< 0.005	THE PARTY OF THE P
20 Cadmium (as Cd) mg/l <0.001 APHA (23rd Edition)3120B 2017_(O) 21 Cyanide (as CN) mg/l <0.02	18	Sulphate (as SO ₄)	mg/l	<1.0	APHA (23rd Edition) 4500 -SO42- E : 2017
21 Cyanide (as CN) mg/l <0.02	19	Total Hardness (as CaCO ₃)	mg/l	247	APHA (23rd Edition) , 2340 C : 2017
21 Cyanide (as CN) mg/l <0.02	20	Cadmium (as Cd)	mg/l	<0.001	APHA (23rd Edition)3120B 2017 (O)
23 Mercury (as Hg) mg/l <0.001 IS 3025 (Part 48): 1994	21	Cyanide (as CN)	mg/l	<0.02	
	22	Lead (as Pb)	mg/l	<0.005	APHA (23rd Edition) 3120 B: 2017
24 Nickel (as Ni) mg/l <0.02 APHA (23rd Edition) 3120 B : 2017	23	Mercury (as Hg)	mg/l	<0.001	IS 3025 (Part 48): 1994
	24	Nickel (as Ni)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017

for Mitra S. K. Private Limited

Contd to Page-2

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Page-2

SI No.	Test Parameters	Unit	Result	Method
25	Arsenic(as As)	mg/l	<0.005	APHA (23rd Edition)3120B 2017 (ICP OES) (O)
26	Total Chromium (as Cr)	mg/l	<0.01	APHA (23rd Edition) 3120 B: 2017
27	Zinc (as Zn)	mg/l	<0.02	APHA (23rd Edition) 3120 B: 2017
28	Sulphide (as H ₂ S)	mg/l	<0.01	APHA 23rd Edition, 4500 S2- D: 2017
29	Magnesium (as Mg ⁺²)	mg/l	25	APHA (23rd Edition) 3500 Mg B,2017 (O)
30	Total Alkalinity (as CaCO ₃)	mg/l	341	APHA 23rd Edtn-2017, 2320B (O)
31	E.coli	/100ml	Not Detected	APHA 23rd Edition 9221 F (O)
32	Total coliform	MPN/100ml	14	APHA 23rd Edition 9221 B (O)

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. :WB/ED-3906 **Date**: :31.01.2023

Sample No.: MSKGL/ED/2022-23/12/01592 Sample Description: Ground Water Sampling Location: Deep Tube Well-2

Sample Drawn on: 27.12.2022

Reference No.& Date: 4700016682

ANALYSIS RESULT

SI No.	Test Parameters	Unit	Result	Method
1.	Colour	Hazen	<5.0	APHA (23rd Ediition) 2120B : 2017
2.	pH value at 20° C		8.34	APHA (23rd Edition) 4500 -H-B: 2017
3.	Turbidity	N.T.U.	4.6	APHA (23rd Edition) 2130B : 2017
4.	Total Dissolved Solids	mg/l	1226	APHA (23rd Edition) 2540C : 2017
5.	Aluminium (as AI)	mg/l	<0.01	APHA (23rd Edition)3120 B : 2017
6.	Barium (as Ba)	mg/l	< 0.05	APHA (23rd Edition)3120B 2017 (ICP OES) (C
7.	Boron (as B)	mg/l	<0.5	APHA (23 rd Edition)2540C (O)
8.	Calcium (as Ca)	mg/l	85	APHA (23rd Edition) 3500 Ca B,2017 (O)
9.	Chloride (as CI)	mg/l	474	APHA (23rd Edition) 4500 -CI B : 2017
10.	Copper (as Cu)	mg/l	< 0.02	APHA (23rd Edition) 3120 B: 2017
11.	Fluoride (as F)	mg/l	0.36	APHA (23rd Edition)4500 - F C/D, 2017 (O)
12.	Iron (as Fe)	mg/l	0.40	APHA (23rd Edition) 3500 Fe B : 2017
13.	Manganese (as Mn)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017
14.	Nitrate (as NO ₃)	mg/l	<0.5	APHA (23rd Edition) 4500 -NO3- E: 2017
15.	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	<0.001	APHA (23rd Edition) 5530C : 2017
16.	Selenium (as Se)	mg/l	<0.005	APHA (23rd Edition) 3120 B : 2017
17.	Silver (as Ag)	mg/l	< 0.005	APHA (23rd Edition)3120B 2017 (O)
18	Sulphate (as SO ₄)	mg/l	1.5	APHA (23rd Edition) 4500 -SO42- E : 2017
19	Total Hardness (as CaCO ₃)	mg/l	388	APHA (23rd Edition), 2340 C: 2017
20	Cadmium (as Cd)	mg/l	< 0.001	APHA (23rd Edition)3120B 2017 (O)
21	Cyanide (as CN)	mg/l	<0.02	APHA (23rd Edition) 4500 -CN- F: 2017
22	Lead (as Pb)	mg/l	< 0.005	APHA (23rd Edition) 3120 B : 2017
23	Mercury (as Hg)	mg/l	<0.001	IS 3025 (Part 48): 1994
24	Nickel (as Ni)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017

for Mitra S. K. Private Limited

Contd to Page-2

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Page-2

SI No.	Test Parameters	Unit	Result	Method
25	Arsenic(as As)	mg/l	<0.005	APHA (23rd Edition)3120B 2017 (ICP OES) (O)
26	Total Chromium (as Cr)	mg/l	<0.01	APHA (23rd Edition) 3120 B: 2017
27	Zinc (as Zn)	mg/l	<0.02	APHA (23rd Edition) 3120 B: 2017
28	Sulphide (as H ₂ S)	mg/l	<0.01	APHA 23rd Edition, 4500 S2- D: 2017
29	Magnesium (as Mg ⁺²)	mg/l	42	APHA (23rd Edition) 3500 Mg B,2017 (O)
30	Total Alkalinity (as CaCO ₃)	mg/l	314	APHA 23rd Edtn-2017, 2320B (O)
31	E.coli	/100ml	Not Detected	APHA 23rd Edition 9221 F (O)
32	Total coliform	MPN/100ml	<1.8	APHA 23rd Edition 9221 B (O)

Report Prepared By

for Mitra S. K. Private Limited
Lay
Authorised Signatory

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Name & Address of the Customer: 'INDORAMA INDIA PRIVATE. LIMITED.'

Haldia, Pin-721602

Report No. :WB/ED-3907 **Date**: :31.01.2023

Sample No.: MSKGL/ED/2022-23/12/01593
Sample Description: Ground Water
Sampling Location:(Kumarchak Village)

Beside Plant

Sample Drawn on: 27.12.2022

Reference No.& Date: 4700016682

ANALYSIS RESULT

SI No.	Test Parameters	Unit	Result	Method
1.	Colour	Hazen	<5.0	APHA (23rd Ediition) 2120B: 2017
2.	pH value at 20° C		8.45	APHA (23rd Edition) 4500 -H-B: 2017
3.	Turbidity	N.T.U.	<1.0	APHA (23rd Edition) 2130B : 2017
4.	Total Dissolved Solids	mg/l	62	APHA (23rd Edition) 2540C : 2017
5.	Aluminium (as Al)	mg/l	<0.01	APHA (23rd Edition)3120 B : 2017
6.	Barium (as Ba)	mg/l	<0.05	APHA (23rd Edition)3120B 2017 (ICP OES)_(O)
7.	Boron (as B)	mg/l	<0.5	APHA (23 rd Edition)2540C_(O)
8.	Calcium (as Ca)	mg/l	9.4	APHA (23rd Edition) 3500 Ca B,2017 (O)
9.	Chloride (as CI)	mg/l	8.5	APHA (23rd Edition) 4500 -CI B : 2017
10.	Copper (as Cu)	mg/l	<0.02	APHA (23rd Edition) 3120 B: 2017
11.	Fluoride (as F)	mg/l	0.10	APHA (23rd Edition)4500 - F C/D, 2017 (O)
12.	Iron (as Fe)	mg/l	<0.05	APHA (23rd Edition) 3500 Fe B : 2017
13.	Manganese (as Mn)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017
14.	Nitrate (as NO ₃)	mg/l	0.62	APHA (23rd Edition) 4500 -NO3 E: 2017
15.	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	<0.001	APHA (23rd Edition) 5530C : 2017
16.	Selenium (as Se)	mg/l	< 0.005	APHA (23rd Edition) 3120 B : 2017
17.	Silver (as Ag)	mg/l	<0.005	APHA (23rd Edition)3120B 2017_(O)
18	Sulphate (as SO ₄)	mg/l	1.7	APHA (23rd Edition) 4500 -SO42- E: 2017
19	Total Hardness (as CaCO ₃)	mg/l	27	APHA (23rd Edition) , 2340 C : 2017
20	Cadmium (as Cd)	mg/l	< 0.001	APHA (23rd Edition)3120B 2017_(O)
21	Cyanide (as CN)	mg/l	<0.02	APHA (23rd Edition) 4500 -CN- F: 2017
22	Lead (as Pb)	mg/l	<0.005	APHA (23rd Edition) 3120 B: 2017
23	Mercury (as Hg)	mg/l	<0.001	IS 3025 (Part 48): 1994
24	Nickel (as Ni)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017

for Mitra S. K. Private Limited Lay Authorised Signatory

Contd to Page-2

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

Page-2

SI No.	Test Parameters	Unit	Result	Method
25	Arsenic(as As)	mg/l	<0.005	APHA (23rd Edition)3120B 2017 (ICP OES)_(O)
26	Total Chromium (as Cr)	mg/l	<0.01	APHA (23rd Edition) 3120 B : 2017
27	Zinc (as Zn)	mg/l	<0.02	APHA (23rd Edition) 3120 B : 2017
28	Sulphide (as H ₂ S)	mg/l	<0.01	APHA 23rd Edition, 4500 S2- D: 2017
29	Magnesium (as Mg ⁺²)	mg/l	<0.96	APHA (23rd Edition) 3500 Mg B,2017 (O)
30	Total Alkalinity (as CaCO ₃)	mg/l	39	APHA 23rd Edtn-2017, 2320B (O)
31	E.coli	/100ml	Not Detected	APHA 23rd Edition 9221 F (O)
32	Total coliform	MPN/100ml	21	APHA 23rd Edition 9221 B (O)

Report Prepared By

for Mitra S. K. Private Limited

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.